已知二階矩陣M有特征值及對應(yīng)的一個特征向量,并且矩陣M對應(yīng)的變換將點(diǎn)變換成,求矩陣M.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
A、14 | B、16 | C、28 | D、32 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,直線l:x+y+2=0在矩陣M=對應(yīng)的變換作用下得到直線m:x-y-4=0,求實(shí)數(shù)a、b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
二階矩陣M有特征值,其對應(yīng)的一個特征向量e=,并且矩陣M對應(yīng)的變換將點(diǎn)變換成點(diǎn).
(1)求矩陣M;
(2)求矩陣M的另一個特征值及對應(yīng)的一個特征向量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,單位正方形區(qū)域在二階矩陣的作用下變成平行四邊形區(qū)域.
(Ⅰ)求矩陣;
(Ⅱ)求,并判斷是否存在逆矩陣?若存在,求出它的逆矩陣.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知矩陣A=,若矩陣A屬于特征值6的一個特征向量為α1=,屬于特征值1的一個特征向量為α2=.求矩陣A,并寫出A的逆矩陣.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
將正整數(shù)()任意排成行列的數(shù)表.對于某一個數(shù)表,計算各行和各列中的任意兩個數(shù)()的比值,稱這些比值中的最小值為這個數(shù)表的“特征值”.若表示某個行列數(shù)表中第行第列的數(shù)(,),且滿足,當(dāng)時數(shù)表的“特征值”為_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若點(diǎn)A(1,1)在矩陣M=對應(yīng)變換的作用下得到的點(diǎn)為B(-1,1),求矩陣M的逆矩陣.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com