【題目】設(shè):實(shí)數(shù)滿足,其中:實(shí)數(shù)滿足.

(1),且為真,為假,求實(shí)數(shù)的取值范圍;

(2)的充分不必要條件,求實(shí)數(shù)的取值范圍.

【答案】(1);(2).

【解析】試題分析:第一步首先把a=1代入求出p所表示的含義,解不等式組搞清q的含義,根據(jù)為真,為假,求出x的范圍,第二步的充分不必要條件的等價(jià)關(guān)系為,說明所表示的集合是所表示的集合的真子集,針對(duì)為正、負(fù)兩種情況按要求討論解決.

試題解析:

(1)當(dāng)為真時(shí),當(dāng)為真時(shí)

因?yàn)?/span>為真,為假,所以,一真一假,

假,則,解得

真,則,解得

綜上可知,實(shí)數(shù)的取值范圍為.

(2)由(1)知,當(dāng)為真時(shí),,

因?yàn)?/span>的充分不必要條件,所以的必要不充分條件,

因?yàn)?/span>為真時(shí),若,有的真子集,

所以,解得:

因?yàn)?/span>為真時(shí),若,有的真子集,

所以,不等式組無解

綜上所述:實(shí)數(shù)的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=xex
(1)求f(x)的極值;
(2)k×f(x)≥ x2+x在[﹣1,+∞)上恒成立,求k值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面有四個(gè)命題:
①函數(shù)y=tan x在每一個(gè)周期內(nèi)都是增函數(shù).
②函數(shù)y=sin(2x+ )的圖象關(guān)于直線x= 對(duì)稱;
③函數(shù)y=tanx的對(duì)稱中心(kπ,0),k∈Z.
④函數(shù)y=sin(2x﹣ )是偶函數(shù).
其中正確結(jié)論個(gè)數(shù)(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx+ ,m∈R
(1)當(dāng)m=e(e為自然對(duì)數(shù)的底數(shù))時(shí),求f(x)的最小值;
(2)討論函數(shù)g(x)=f′(x)﹣ 零點(diǎn)的個(gè)數(shù);
(3)(理科)若對(duì)任意b>a>0, <1恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的一條弦被點(diǎn)平分,則此弦所在的直線方程是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),將的圖象向右平移兩個(gè)單位長(zhǎng)度,得到函數(shù)的圖象.

(1)求函數(shù)的解析式;

(2)若方程上有且僅有一個(gè)實(shí)根,求的取值范圍;

(3)若函數(shù)的圖象關(guān)于直線對(duì)稱,設(shè),已知對(duì)任意的恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的,則判斷框內(nèi)可以填入

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)時(shí),方程表示的曲線可能是______

②兩條平行直線 ③橢圓 ④雙曲線 ⑤拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,角A,B,C的對(duì)邊分別是a、b、c,且2sin2A+3cos(B+C)=0.
(1)求角A的大。
(2)若△ABC的面積S=5 ,a= ,求sinB+sinC的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案