【題目】設(shè)l,m是兩條不同直線,α,β是兩個不同平面,則下列命題中正確的是( )
A.若l∥α,α∩β=m,則l∥m
B.若l⊥α,l∥β,則α⊥β
C.若l∥α,m∥α,則l∥m
D.若l∥α,m⊥l,則m⊥α
【答案】B
【解析】解:A.若l∥α,α∩β=m,.則l,m平行或異面,只有l(wèi)β,才有l(wèi)∥m.故A錯;
B.若l⊥α,l∥β,則由線面平行的性質(zhì)定理,lγ,γ∩β=m,則l∥m,又l⊥α,故m⊥α,由面面垂直的判定定理得,α⊥β,故B正確;
C.若l∥α,m∥α,則由線面平行的性質(zhì)可得l,m平行、相交、異面,故C錯;
D.若l∥α,m⊥l,則m與α平行、相交或在平面內(nèi),故D錯.
故選B.
由線面平行的性質(zhì)定理可判斷A;又線面平行的性質(zhì)定理和面面垂直的判定定理即可判斷B;由線面平行的性質(zhì)定理可判斷C;由線面平行的性質(zhì)定理可判斷D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=3x﹣x+5b(b為常數(shù)),則f(﹣1)=( )
A.﹣3
B.﹣1
C.1
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】演繹推理是以下列哪個為前提推出某個特殊情況下的結(jié)論的推理方法( )
A.一般的原理
B.特定的命題
C.一般的命題
D.定理、公式
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面α與平面β、γ都相交,則這三個平面可能的交線有( )
A. 1條或2條 B. 2條或3條
C. 1條或3條 D. 1條或2條或3條
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={x|x2﹣2x﹣8≤0},集合N={x|lgx≥0},則M∩N=( )
A.{x|﹣2≤x≤4}
B.{x|x≥1}
C.{x|1≤x≤4}
D.{x|x≥﹣2}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l和平面α,無論直線l與平面α具有怎樣的位置關(guān)系,在平面α內(nèi)總存在一條直線與直線l( )
A. 相交 B. 平行
C. 垂直 D. 異面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+3x-8的零點(diǎn)x0∈[a,b],且b-a=1,a,b∈N*,則a+b=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三位七進(jìn)制的數(shù)表示的最大的十進(jìn)制的數(shù)是( ).
A.322
B.332
C.342
D.352
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com