分析 (1)由題意知,數(shù)列{an}為等比數(shù)列,再由a2+2a1=4,$a_3^2={a_5}$.可求數(shù)列{an}的首項(xiàng)與公比,從而可得其通項(xiàng)公式;
(2)由bn=nan,即${b_n}=n{a_n}=n•{2^n}$,利用錯(cuò)位相減法即可求數(shù)列{bn}的前n項(xiàng)和Sn.
解答 (本題滿(mǎn)分12分)
(1)數(shù)列{an}滿(mǎn)足:$a_n^2={a_{n-1}}•{a_{n+1}}(n≥2)$,故數(shù)列{an}為等比數(shù)列,
設(shè)${a_n}={a_1}{q^{n-1}}$,${a_3}^2={a_5}$可化為${a_1}^2{q^4}={a_1}{q^4}$,
得a1=1,a2=4-2a1=2,$q=\frac{a_2}{a_1}=2$,所以${a_n}={2^n}$…(4分)
(2)${b_n}=n{a_n}=n•{2^n}$,
${S_n}=1•{2^1}+2•{2^2}+3•{2^3}+…+(n-1)•{2^{n-1}}+n•{2^n}$①
$2{S_n}=1•{2^2}+2•{2^3}+3•{2^4}+…+(n-1)•{2^n}+n•{2^{n+1}}$②…(6分)
由①-②得$-{S_n}={2^1}+{2^2}+…+{2^n}-n•{2^{n+1}}$
即$-{S_n}=\frac{{2(1-{2^n})}}{1-2}-n•{2^{n+1}}$
故${S_n}=(n-1)•{2^{n+1}}+2$…(12分)
點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查等比數(shù)列的性質(zhì)及通項(xiàng)公式的應(yīng)用,突出考查錯(cuò)位相減法求和的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|x<-1或x>1} | B. | {x|2<x<3} | C. | {x|-1<x<3} | D. | {x|x<-1或x>3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1+2i | B. | -1+2i | C. | 1-2i | D. | -1-2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,1) | B. | (-∞,1] | C. | [-2,1) | D. | (-2,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 15 | B. | 10 | C. | 9 | D. | 7 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com