A. | $\frac{{\sqrt{5}-1}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{17}-1}}{4}$ | D. | 2$\sqrt{2}$-2 |
分析 由已知得$\frac{{x}^{2}}{{a}^{2}}+\frac{\frac{{a}^{2}}{4}}{^{2}}=1$,從而c2=$\frac{5{a}^{2}^{2}-{a}^{4}}{4^{2}}$,由此能求出此橢圓的離心率.
解答 解:∵F1、F2是橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn),
以F1F2為直徑的圓與橢圓在第一象限的交點(diǎn)為P,過點(diǎn)P向x軸作垂線,垂足為H,若|PH|=$\frac{a}{2}$,
∴$\frac{{x}^{2}}{{a}^{2}}+\frac{\frac{{a}^{2}}{4}}{^{2}}=1$,解得x2=$\frac{4{a}^{2}^{2}-{a}^{4}}{4^{2}}$,
∴c2=$\frac{4{a}^{2}^{2}-{a}^{4}}{4^{2}}+\frac{{a}^{2}^{2}}{4^{2}}$=$\frac{5{a}^{2}^{2}-{a}^{4}}{4^{2}}$,
∴4c2(a2-c2)=5a2(a2-c2)-a4,
∴4a2c2-4c4=4a4-5a2c2,
∴4e2-4e4=4-5e2,
∴4e4-9e2+4=0,
∵0<e<1,∴${e}^{2}=\frac{9-\sqrt{17}}{8}$,
∴e=$\frac{\sqrt{17}-1}{4}$.
故選:C.
點(diǎn)評 本題考查橢圓的離心率的求法,是中檔題,解題時要認(rèn)真審題,注意橢圓性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{12}{5}$ | B. | $\frac{12}{5}$ | C. | -$\frac{5}{12}$ | D. | ±$\frac{12}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “f(0)=0”是“函數(shù)f(x)是奇函數(shù)”的必要不充分條件 | |
B. | 若p:?x0∈R,x${\;}_{0}^{2}$-x0-1>0,則¬p:?x∈R,x2-x-1<0 | |
C. | 命題“若x2-1=0,則x=1或x=-1”的否命題是“若x2-1≠0,則x≠1或x≠-1” | |
D. | 命題p和命題q有且僅有一個為真命題的充要條件是(¬p∧q)∨(¬q∧p)為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3$\sqrt{6}$ | B. | 4$\sqrt{6}$ | C. | 6$\sqrt{6}$ | D. | 12$\sqrt{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com