設(shè)函數(shù)

   (Ⅰ)求函數(shù)的極值點(diǎn);

   (Ⅱ)當(dāng)p>0時(shí),若對任意的x>0,恒有,求p的取值范圍;

   (Ⅲ)證明:

解:(1),

    …………2分

當(dāng) 上無極值點(diǎn)   …………3分

當(dāng)p>0時(shí),令的變化情況如下表:

x

(0,)

+

0

極大值

…………4分

從上表可以看出:當(dāng)p>0 時(shí),有唯一的極大值點(diǎn)  …………5分

(Ⅱ)當(dāng)p>0時(shí)在處取得極大值,此極大值也是最大值,…………7分

要使恒成立,只需,…………8分     ∴

∴p的取值范圍為[1,+∞   …………10分

(Ⅲ)令p=1,由(Ⅱ)知,

,…………11分

    …………12分

   …………13分

   …………14分

 …………15分

∴結(jié)論成立

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+bln(x+1),其中b≠0.
(1)若b=-12,求f(x)的單調(diào)遞增區(qū)間;
(2)如果函f(x)在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列bn,bn=f-1(n)若對于任意n∈N*都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反函數(shù)列”
(1)設(shè)函數(shù)f(x)=
px+1
x+1
,若由函數(shù)f(x)確定的數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)已知正整數(shù)列{cn}的前項(xiàng)和sn=
1
2
(cn+
n
cn
).寫出Sn表達(dá)式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時(shí),設(shè)dn=
-1
anSn2
,Dn是數(shù)列{dn}的前n項(xiàng)和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函f(x)=ln x,g(x)=
12
ax2+bx(a≠0).
(1)若a=-2時(shí),函h(x)=f(x)-g(x),在其定義域是增函數(shù),求b的取值范圍;
(2)在(1)的結(jié)論下,設(shè)函數(shù)φ(x)=e2x+bex,x∈[0,ln2],求函數(shù)φ(x)的最小值;
(3)當(dāng)a=-2,b=4時(shí),求證2x-f(x)≥g(x)-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x1,x2(x1≠x2)是函數(shù)f(x)=ax3+bx2-a2x(a>0)的兩個(gè)極值點(diǎn).
(1)若x1=-1,x2=2,求函f(x)的解析式;
(2)若|x1|+|x2|=2
2
,求b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省宜賓市南溪一中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函f(x)=ln x,g(x)=ax2+bx(a≠0).
(1)若a=-2時(shí),函h(x)=f(x)-g(x),在其定義域是增函數(shù),求b的取值范圍;
(2)在(1)的結(jié)論下,設(shè)函數(shù)φ(x)=e2x+bex,x∈[0,ln2],求函數(shù)φ(x)的最小值;
(3)當(dāng)a=-2,b=4時(shí),求證2x-f(x)≥g(x)-3.

查看答案和解析>>

同步練習(xí)冊答案