某隨機變量X服從正態(tài)分布,其概率密度函數(shù)為f(x)=
1
e 
x2
8
,則X的期望μ=
 
,標準差σ=
 
考點:正態(tài)分布曲線的特點及曲線所表示的意義
專題:
分析:利用正態(tài)總體的概率密度函數(shù)為f(x)=
1
σ
e-
(x-μ)2
2σ2
,其中的實數(shù)μ、σ是參數(shù),分別表示總體的平均值與標準差.即可得出.
解答: 解:正態(tài)總體的概率密度函數(shù)為f(x)=
1
σ
e-
(x-μ)2
2σ2
,其中的實數(shù)μ、σ是參數(shù),分別表示總體的平均值與標準差.

∵隨機變量X服從正態(tài)分布,其密度函數(shù)為f(x)=
1
e 
x2
8
=
1
•2
e-
(x-0)2
22
,
∴μ=0,σ=2.
故答案為:0,2.
點評:本題考查了正態(tài)總體的概率密度函數(shù)為f(x)=
1
σ
e-
(x-μ)2
2σ2
,其中的實數(shù)μ、σ是參數(shù)及其性質(zhì),屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
y2
a2
+
x2
b2
=1(a>b>0)經(jīng)過點A(-
1
2
,
3
),且離心率為
3
2

(1)求橢圓C的標準方程;
(2)設(shè)E,F(xiàn)是橢圓C上的兩點,線段EF的垂直平分線與x軸相交于點P(t,0),求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=
1
3
x3+bx2+(b+2)x+3是R上的單調(diào)增函數(shù),則b的取值范圍是( 。
A、-1<b<2
B、-1≤b≤2
C、b<-1或b>2
D、b≤-2或b≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=x3,求曲線在點P(1,1)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,2),
b
=(2,1).
(1)求向量
a
在向量
b
方向上的投影.
(2)若(m
a
+n
b
)⊥(
a
-
b
)(m,n∈R),求m2+n2+2m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M(x0,y0)是圓x2+y2=r2(r>0)內(nèi)異于圓心的一點,則此直線x0x+y0y=r2與該圓( 。
A、相交B、相切C、相離D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

217與155的最大公約數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一個容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3
(1)繪制頻率分布表;(結(jié)果用分數(shù)表示)
(2)根據(jù)樣本的頻率分布,估計大于或等于31.5的數(shù)據(jù)的可能性是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)偶函數(shù)f(x)的定義域為R,當x∈[0,+∞)時,f(x)是增函數(shù),則f(-2),f(1),f(-3)的大小關(guān)系是(  )
A、f(1)>f(-3)>f(-2)
B、f(1)>f(-2)>f(-3)
C、f(1)<f(-3)<f(-2)
D、f(1)<f(-2)<f(-3)

查看答案和解析>>

同步練習冊答案