已知點(diǎn)H(0,―3),點(diǎn)P在x軸上,點(diǎn)Q在y軸正半軸上,點(diǎn)M在直線PQ上,且滿足,

(1)當(dāng)點(diǎn)P在x軸上移動時,求動點(diǎn)M的軌跡曲線C的方程;

(2)過定點(diǎn)A(a,b)的直線與曲線C相交于兩點(diǎn)S、R,求證:拋物線S、R兩點(diǎn)處的切線的交點(diǎn)B恒在一條直線上.

答案:
解析:

答案:;

(1)解:設(shè)P(a,0),Q(0,b)

則: ∴

設(shè)M(x,y)∵

 

(2)解法一:設(shè)A(a,b),(x1≠x2)

則:直線SR的方程為:,即4y =(x1+x2)x-x1x2

∵A點(diǎn)在SR上,∴4b=(x1+x2)a-x1x2、

求導(dǎo)得:y′=x

∴拋物線上S、R處的切線方程為:

即4 、

即4 ③

聯(lián)立②③,并解之得 ,代入①得:ax-2y-2b=0

故:B點(diǎn)在直線ax-2y-2b=0上

解法二:設(shè)A(a,b)

當(dāng)過點(diǎn)A的直線斜率不存在時l與拋物線有且僅有一個公共點(diǎn),與題意不符,可設(shè)直線SR的方程為y-b=k(x-a)

聯(lián)立消去y得:x2-4kx+4ak-4b=0

設(shè),(x1≠x2)

則由韋達(dá)定理:

又過S、R點(diǎn)的切線方程分別為:

聯(lián)立,并解之得 (k為參數(shù))

消去k,得:ax-2y-2b=0

故:B點(diǎn)在直線2ax-y-b=0上


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)H(-3,0),點(diǎn)P在y軸上,點(diǎn)Q在x軸正半軸上,點(diǎn)M在直線PQ上,且滿足
HP
PM
=0
,
PM
=-
3
2
MQ

(1)當(dāng)點(diǎn)P在y軸上移動時,求點(diǎn)M的軌跡C;
(2)過點(diǎn)(1,0)作直線L交軌跡C于A、B兩點(diǎn),已知
AF
=2
FB
,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)H(-3,0),點(diǎn)P在y軸上,點(diǎn)Q在x軸的正半軸上,點(diǎn)M在直線PQ上,且滿足
HP
PM
=0
,
PM
=-
3
2
MQ

①當(dāng)點(diǎn)P在y軸上移動時,求點(diǎn)M的軌跡C;
②過點(diǎn)R(2,1)作直線l與軌跡C交于A,B兩點(diǎn),使得R恰好為弦AB的中點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•和平區(qū)三模)已知點(diǎn)H(-3,0),點(diǎn)P在y軸上,點(diǎn)Q在x軸正半軸上,點(diǎn)M在直線PQ上,且
HP
PM
=0
,又
PM
=-
3
2
MQ

(1)當(dāng)點(diǎn)P在y軸上移動時,求點(diǎn)M的軌跡C的方程;
(2)若直線l:y=k(x-1)(k>2)與軌跡C交于A、B兩點(diǎn),AB中點(diǎn)N到直線3x+4y+m=0(m>-3)的距離為
1
5
,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年萊西一中模擬理)(14分)已知點(diǎn)H(-3,0),點(diǎn)P軸上,點(diǎn)Q軸的正半軸上,點(diǎn)M在直線PQ上,且滿足.

(Ⅰ)當(dāng)點(diǎn)P軸上移動時,求點(diǎn)M的軌跡C;

(Ⅱ)過定點(diǎn)作直線交軌跡CAB兩點(diǎn),ED點(diǎn)關(guān)于坐標(biāo)原點(diǎn)O的對稱點(diǎn),求證:;

(Ⅲ)在(Ⅱ)中,是否存在垂直于軸的直線被以AD為直徑的圓截得的弦長恒為定值?若存在求出的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案