分析 (1)過E作EF⊥AD交AD于F,則∠CEF是異面直線PA與CE的夾角,由此能求出異面直線PA與CE所成角的大。
(2)三棱錐A-CDE的體積VA-CDE=VEACD,由此能求出三棱錐A-CDE的體積.
解答 (本題滿分12分)本題共有2個小題,第1小題滿分(5分),第2小題滿分(7分).
解:(1)過E作EF⊥AD交AD于F,
則∠CEF是異面直線PA與CE的夾角
連結CF,在Rt△CEF中,
∵EF=$\frac{1}{2}$,CF=$\sqrt{2}$,∴tan∠CEF=$\frac{CF}{EF}$=2$\sqrt{2}$.
∴∠CEF=arctan2$\sqrt{2}$.
∴異面直線PA與CE所成角的大小為arctan2$\sqrt{2}$.
(2)三棱錐A-CDE的體積:
VA-CDE=VEACD=$\frac{1}{3}×(\frac{1}{2}×1×2)×\frac{1}{2}=\frac{1}{6}$.
點評 本題考查異面直線所居角的大小的求法,考查三棱錐的體積的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
流量(x) | 0≤x<5 | 5≤x<10 | 10≤x<15 | 15≤x<20 | 20≤x<25 | x≥25 |
頻率 | 0.05 | 0.25 | 0.30 | 0.25 | 0.15 | 0 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{1+{m^2}}$ | C. | 1 | D. | $\sqrt{1-{m^2}}$ |
查看答案和解析>>
科目:高中數學 來源:2016-2017學年安徽六安一中高一上國慶作業(yè)二數學試卷(解析版) 題型:解答題
設,,,,.
(1)求;
(2)設,且中有且僅有2個元素屬于,求的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com