分析 (Ⅰ)由已知列關(guān)于公比的方程,求解方程即可得到q值;
(Ⅱ)分別求出等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和,分類作出比較得答案.
解答 解:(Ι)由已知可得a1+2a1q=3a1q2.
∵{an}是等比數(shù)列,∴a1≠0,
則3q2-2q-1=0.
解得:q=1或q=$-\frac{1}{3}$.
∵q≠1,
∴q=$-\frac{1}{3}$;
(II)由(Ι)知等差數(shù)列{bn}的公差為$-\frac{1}{3}$,
∴$_{n}=2+(n-1)(-\frac{1}{3})=\frac{7-n}{3}$,
${T}_{n}=2n+\frac{n}{2}(n-1)(-\frac{1}{3})=\frac{13n-{n}^{2}}{6}$,
${T}_{n}-_{n}=-\frac{(n-1)(n-14)}{6}$,
當(dāng)n>14時(shí),${T}_{n<_{n}}$;
當(dāng)n=14時(shí),Tn=bn;
當(dāng)2≤n<14時(shí),Tn>bn.
綜上,當(dāng)2≤n<14時(shí),Tn>bn;
當(dāng)n=14時(shí),Tn=bn;
當(dāng)n>14時(shí),Tn<bn.
點(diǎn)評 本題考查數(shù)列遞推式,考查了等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和,訓(xùn)練了作差法兩個(gè)函數(shù)值的大小,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | $\frac{5}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{f(e)}{e^2}>\frac{{f({e^2})}}{e}$ | B. | $\frac{f(2)}{9}<\frac{f(3)}{4}$ | C. | $\frac{f(2)}{e^2}>\frac{f(e)}{4}$ | D. | $\frac{f(e)}{e^2}<\frac{f(3)}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | $\frac{20}{3}$ | D. | $\frac{26}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,$\frac{1}{2}$] | B. | [$\frac{1}{2}$,$\frac{9}{4}$) | C. | [$\frac{1}{2}$,$\frac{9}{4}$] | D. | [$\frac{9}{4}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | |a7|>|a8| | B. | |a7|<|a8| | C. | |a7|=|a8| | D. | |a7|=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com