【題目】在數(shù)列{an}中,前n項(xiàng)和為Sn , 且Sn= ,數(shù)列{bn}的前n項(xiàng)和為T(mén)n , 且bn=
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在m,n∈N* , 使得Tn=am , 若存在,求出所有滿(mǎn)足題意的m,n,若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)解:當(dāng)n=1時(shí),a1=S1=1
當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1=n
經(jīng)驗(yàn)證,a1=1滿(mǎn)足上式,故數(shù)列{an}的通項(xiàng)公式an=n
(2)解:由題意,易得Tn= + +…+
∴ Tn= + +…+ ,
兩式相減得 Tn= + +…+ ﹣ =1﹣ ﹣ ,
所以Tn=2﹣
由于Tn<2,又2﹣ =m,∴m=1,解得n=2
【解析】(1)當(dāng)n=1時(shí),a1=S1=1;當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1=n,由此能求出數(shù)列{an}的通項(xiàng)公式.(2)由已知:Tn= + +…+ ,由此利用錯(cuò)位相減法能求出數(shù)列{bn}的前n項(xiàng)和Tn , 即可得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為.
(1)求橢圓的方程式;
(2)已知?jiǎng)又本(xiàn)與橢圓相交于兩點(diǎn).
①若線(xiàn)段中點(diǎn)的橫坐標(biāo)為,求斜率的值;
②已知點(diǎn),求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是橢圓和雙曲線(xiàn)的公共焦點(diǎn),是它們的一個(gè)公共點(diǎn),且,則橢圓和雙曲線(xiàn)的離心率的倒數(shù)之和的最大值為( )
A. B. C. 3 D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出名,將其成績(jī)(均為整數(shù))整理后畫(huà)出的頻率分布直方圖如下,觀察圖形,回答下列問(wèn)題:
(1)這一組的頻數(shù)、頻率分別是多少?
(2)估計(jì)這次環(huán)保知識(shí)競(jìng)賽的及格率(分及以上為及格)和平均數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:圓心到直線(xiàn)的距離與圓的半徑之比為直線(xiàn)關(guān)于圓的距離比.
(1)設(shè)圓求過(guò)(2,0)的直線(xiàn)關(guān)于圓的距離比的直線(xiàn)方程;
(2)若圓與軸相切于點(diǎn)(0,3)且直線(xiàn)= 關(guān)于圓的距離比,求此圓的的方程;
(3)是否存在點(diǎn),使過(guò)的任意兩條互相垂直的直線(xiàn)分別關(guān)于相應(yīng)兩圓的距離比始終相等?若存在,求出相應(yīng)的點(diǎn)點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知矩形的長(zhǎng)為2,寬為1,.邊分別在軸.軸的正半軸上,點(diǎn)與坐標(biāo)原點(diǎn)重合(如圖所示)。將矩形折疊,使點(diǎn)落在線(xiàn)段上。
(1)若折痕所在直線(xiàn)的斜率為,試求折痕所在直線(xiàn)的方程;
(2)當(dāng)時(shí),求折痕長(zhǎng)的最大值;
(3)當(dāng)時(shí),折痕為線(xiàn)段,設(shè),試求的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某玩具所需成本費(fèi)用為P元,且P=1 000+5x+x2,而每套售出的價(jià)格為Q元,其中Q(x)=a+ (a,b∈R),
(1)問(wèn):玩具廠生產(chǎn)多少套時(shí),使得每套所需成本費(fèi)用最少?
(2)若生產(chǎn)出的玩具能全部售出,且當(dāng)產(chǎn)量為150套時(shí)利潤(rùn)最大,此時(shí)每套價(jià)格為30元,求a,b的值.(利潤(rùn)=銷(xiāo)售收入-成本).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三年級(jí)進(jìn)行了一次學(xué)業(yè)水平測(cè)試,用系統(tǒng)抽樣的方法抽取了50名學(xué)生的數(shù)學(xué)成績(jī),準(zhǔn)備進(jìn)行分析和研究.經(jīng)統(tǒng)計(jì),成績(jī)的分組及各組的頻數(shù)如下: ,2; ,3; ,10;
15; ,12; ,8.
(1)完成樣本的頻率分布表,畫(huà)出頻率分布直方圖;
(2)估計(jì)成績(jī)?cè)?5分以下的學(xué)生比例;
(3)請(qǐng)你根據(jù)以上信息去估計(jì)樣本的眾數(shù)、中位數(shù)、平均數(shù)(精確到0.01).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最小正周期為.
(1)求的單調(diào)遞增區(qū)間;
(2)在中,角的對(duì)邊分別是滿(mǎn)足,求函數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com