【題目】已知函數(shù)

1)當(dāng)時(shí),求處的切線方程;

2)設(shè)函數(shù),

)若函數(shù)有且僅有一個(gè)零點(diǎn)時(shí),求的值;

)在()的條件下,若,,求的取值范圍。

【答案】12)(

【解析】試題分析: (1)對函數(shù)求導(dǎo),求出,即可求出切線方程;

2)()分離參數(shù)得,由函數(shù)的單調(diào)性可知,,可求得;)研究函數(shù)的單調(diào)性,求出函數(shù)在區(qū)間上的最大值即可.

試題解析:(1)當(dāng)時(shí),定義域,

,又

處的切線方程4

2)()令

,

,

上是減函數(shù)

所以當(dāng)時(shí),,當(dāng)時(shí),

所以上單調(diào)遞增,在上單調(diào)遞減,

所以當(dāng)函數(shù)有且今有一個(gè)零點(diǎn)時(shí),9

)當(dāng),若只需證明

,

函數(shù)上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增

,

13

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某賓館有相同標(biāo)準(zhǔn)的床位100張,根據(jù)經(jīng)驗(yàn),當(dāng)該賓館的床價(jià)(即每張床位每天的租金)不超過10元時(shí),床位可以全部租出;當(dāng)床位高于10元時(shí),每提高1元,將有3張床位空閑. 為了獲得較好的效益,該賓館要給床位定一個(gè)合適的價(jià)格,條件是:①要方便結(jié)帳,床價(jià)應(yīng)為1元的整數(shù)倍;②該賓館每日的費(fèi)用支出為575元,床位出租的收入必須高于支出,而且高得越多越好.若用x表示床價(jià),用y表示該賓館一天出租床位的凈收入(即除去每日的費(fèi)用支出后的收入):
(1)把y表示成x的函數(shù);
(2)試確定,該賓館將床價(jià)定為多少元時(shí),既符合上面的兩個(gè)條件,又能使凈收入高?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班學(xué)生進(jìn)行了三次數(shù)學(xué)測試,第一次有8名學(xué)生得滿分,第二次有10名學(xué)生得滿分,第三次有12名學(xué)生得滿分,已知前兩次均為滿分的學(xué)生有5名,三次測試中至少有一次得滿分的學(xué)生有15名,若后兩次均為滿分的學(xué)生至少有名,則的值為( )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-5:不等式選講]

已知函數(shù)f(x)=|2x﹣1|+|x+1|,g(x)=|x﹣a|+|x+a|.

(Ⅰ)解不等式f(x)>9;

(Ⅱ)x1∈R,x2R,使得f(x1)=g(x2),求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)是定義在R上的偶函數(shù),對于xR,都有f(x+4)=f(x)+f(2)成立,當(dāng)x1,x2[0,2]且x1≠x2時(shí),都有 給出下列四個(gè)命題:

①f(﹣2)=0;

直線x=﹣4是函數(shù)y=f(x)的圖象的一條對稱軸;

函數(shù)y=f(x)在[4,6]上為減函數(shù);

函數(shù)y=f(x)在(﹣8,6]上有四個(gè)零點(diǎn).

其中所有正確命題的序號為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+a(x﹣1)2,其中a>0.

(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;(2)討論函數(shù)f(x)的單調(diào)性;

(3)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于☉O,AB=AC,直線MN切☉O于點(diǎn)C,弦BD∥MN,AC與BD相交于點(diǎn)E.

(1)求證:△ABE≌△ACD;
(2)求證:BE=BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,圓錐SO的軸截面△SAB是邊長為4的正三角形,M為母線SB的中點(diǎn),過直線AM作平面β⊥面SAB,設(shè)β與圓錐側(cè)面的交線為橢圓C,則橢圓C的短半軸長為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=x2+2x.
(1)現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,請補(bǔ)出完整函數(shù)f(x)的圖象,并根據(jù)圖象寫出函數(shù)f(x)的增區(qū)間;

(2)寫出函數(shù)f(x)的解析式和值域.

查看答案和解析>>

同步練習(xí)冊答案