已知定義在R上的函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對應(yīng)值表,那么函數(shù)f(x)一定存在零點的區(qū)間是( 。
x 1 2 3
f(x) 4.5 -2.9 -3
A、(-∞,1)
B、(1,2)
C、(2,3)
D、(3,+∞)
考點:函數(shù)零點的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)零點存在定理求解.
解答: 解:∵函數(shù)f(x)的圖象是連續(xù)不斷的,
且由函數(shù)的對應(yīng)值表知f(1)f(2)=4.5×(-2.9)<0,
∴由函數(shù)零點存在定理知:
函數(shù)f(x)一定在(1,2)區(qū)間內(nèi)存在零點.
故選:B.
點評:本題考查函數(shù)零點區(qū)間的求法,解題時要認真審題,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

從某校高三年級隨機抽取一個班,對該班50名學生的高校招生體檢表中視力情況進行統(tǒng)計,按視力分六組(0.3,0.5],(0.5,0.7],(0.7,0.9],(0.9,1.1](1.1,1.3],(1.3,1.5].其結(jié)果的頻率分布直方圖如圖所示:若某高校A專業(yè)對視力的要求在0.9以上,則該班學生中能報A專業(yè)的人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知事件A發(fā)生的概率為
4
15
,事件B發(fā)生的概率為
9
30
,事件A、B同時發(fā)生的概率為
1
5
,則在事件A發(fā)生的條件下,事件B發(fā)生的概率為( 。
A、
1
5
B、
2
3
C、
3
4
D、
8
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列求導運算正確的是(  )
A、(x+
3
x
)′=1+
3
x2
B、(log2x)′=
1
xln2
C、(3x)′=3xlog3e
D、(x2cosx)′=-2xsinx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在20瓶飲料中,有4瓶已過了保質(zhì)期.從這20瓶飲料中任取1瓶,取到已過保質(zhì)期飲料的概率是( 。
A、
1
10
B、
1
5
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若5名學生排成一列,則其中學生甲站在最左邊的排法種數(shù)為(  )
A、10B、48C、120D、24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,EFGH是以O(shè)為圓心,1為半徑的圓的內(nèi)接正方形,將一顆豆子隨機地擲到圓內(nèi),用A表示事件“豆子落在正方形EFGH內(nèi)”,B表示事件“豆子落在扇形HOE(陰影部分)內(nèi)”,則P(B|A)=( 。
A、
1
4
B、
1
3
C、
π
8
D、
π
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x0>0,lnx0<0.則¬p為(  )
A、?x>0,lnx≥0
B、?x≤0,lnx≥0
C、?x0>0,lnx0≥0
D、?x0≤0,lnx0<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C1的參數(shù)方程為
x=2cosφ
y=2sinφ
(φw為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C2的極坐標方程為ρ=4sin(θ+
π
3
).
(Ⅰ)將圓C1的參數(shù)方程化為普通方程,將圓C2的極坐標方程化為直角坐標系方程;
(Ⅱ)圓C1,C2是否相交?請說明理由.

查看答案和解析>>

同步練習冊答案