【題目】已知 且函數y=f(x)﹣x恰有3個不同的零點,則實數a的取值范圍是( )
A.(0,+∞)
B.[﹣1,0)
C.[﹣1,+∞)
D.[﹣2,+∞)
【答案】C
【解析】解:因為當x≥0的時候,f(x)=f(x﹣1),所以所有大于等于0的x代入得到的f(x)相當于在[﹣1,0)重復的周期函數
x∈[﹣1,0)時,y=a﹣x2﹣2x=1+a﹣(x+1)2 , 對稱軸x=﹣1,頂點(﹣1,1+a)
①如果a<﹣1,函數y=f(x)﹣x至多有2個不同的零點;
②如果a=﹣1,則y有一個零點在區(qū)間(﹣1,0),有一個零點在(﹣∞,﹣1),一個零點是原點;
③如果a>﹣1,則有一個零點在(﹣∞,﹣1),y右邊有兩個零點,
故實數a的取值范圍是[﹣1,+∞)
故選C.
【考點精析】掌握函數的零點與方程根的關系是解答本題的根本,需要知道二次函數的零點:(1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點.
科目:高中數學 來源: 題型:
【題目】已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中x軸的正半軸重合,若曲線C的參數方程為 (α是參數),直線l的極坐標方程為 ρsin(θ﹣ )=1.
(1)將曲線C的參數方程化為極坐標方程;
(2)由直線l上一點向曲線C引切線,求切線長的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(x+ ),x∈R,且f( )= .
(1)求A的值;
(2)若f(θ)+f(﹣θ)= ,θ∈(0, ),求f( ﹣θ).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知點P是平行四邊形ABCD所在平面外一點,M、N分別是AB、PC的中點.
(1)求證:MN∥平面PAD;
(2)在PB上確定一個點Q,使平面MNQ∥平面PAD.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a≥3,函數F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=
(1)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范圍
(2)(1)求F(x)的最小值m(a)
(3)求F(x)在[0,6]上的最大值M(a)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l過直線x﹣y﹣1=0與直線2x+y﹣5=0的交點P.
(1)若l與直線x+3y﹣1=0垂直,求l的方程;
(2)點A(﹣1,3)和點B(3,1)到直線l的距離相等,求直線l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com