曲線y=
x-1
x+1
在點M(1,0)處的切線的斜率為
 
考點:利用導數(shù)研究曲線上某點切線方程
專題:計算題,導數(shù)的概念及應用
分析:求出函數(shù)的導函數(shù),把切點的橫坐標代入即可求出切線的斜率.
解答: 解:∵y=
x-1
x+1
,
∴y′=
x+1-(x-1)
(x+1)2

=
2
(x+1)2
,
∴當x=1時,y′=
1
2

即在點M(1,0)處的切線的斜率為
1
2

故答案為:
1
2
點評:本題考查學生會根據(jù)導函數(shù)求切線的斜率,考查導數(shù)的運算,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

2011年3月,日本發(fā)生了9.0級地震,地震引起了海嘯及核泄漏,某國際組織用分層抽樣的方法從心理專家,核專家,地質(zhì)專家三類專家中抽取若干人組成研究團隊赴日本工作,有關數(shù)據(jù)見下表(單位:人).
相關人員數(shù)抽取人數(shù)
心理專家24x
核專家48y
地質(zhì)專家726
(Ⅰ)求研究團隊的總?cè)藬?shù);
(Ⅱ)若從研究團隊的心理專家和核專家中隨機選2人撰寫研究報告,求其中恰好有1人為心理專家的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=x-x2
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間[a,a+1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+x+1(x∈R),探究f(x)在(-∞,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

y=log 
1
2
(2x+
π
4
)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα-cosβ=-
2
3
,cosα+sinβ=
1
3
,則sin(α-β)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,若an2-an-12=p(n≥2,n∈N*,p為常數(shù)),則稱{an}為“等方差數(shù)列”.
下列是對“等方差數(shù)列”的判斷:
①若{an}是等方差數(shù)列,則{an2}是等差數(shù)列;
②已知數(shù)列{an}是等方差數(shù)列,則數(shù)列{an2}是等方差數(shù)列.
③{(-1)n}是等方差數(shù)列;
④若{an}是等方差數(shù)列,則{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列;
其中正確命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“若x>1,則x2-2x+3>0”的逆命題是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,a1=2,an+1=an+n(n=1,2,3,…),則{an}的通項公式是
 

查看答案和解析>>

同步練習冊答案