垂直于直線l1:3x-4y+100=0的直線l2,l2與兩坐標軸所圍成的三角形的面積為6,則直線l2在x軸上的截距為
 
考點:直線的一般式方程與直線的垂直關(guān)系
專題:直線與圓
分析:根據(jù)直線垂直的關(guān)系求出直線方程即可得到結(jié)論.
解答: 解:∵直線l2垂直于直線l1:3x-4y+100=0,
∴設(shè)直線l2的方程為4x+3y+b=0,
當x=0時,y=-
b
3
,
當y=0時,x=-
b
4
,
∵l2與兩坐標軸所圍成的三角形的面積為6,
1
2
|-
b
3
|•|-
b
4
|=6
,
即b2=144,解得b=12或-12,
則直線l2在x軸上的截距為x=-
b
4
=-3或3,
故答案為:-3或3
點評:本題主要考查直線方程的求解,根據(jù)直線垂直的關(guān)系設(shè)出直線方程是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

命題P:若實數(shù)數(shù)列{an}是等比數(shù)列,滿足a24a10a(  )=64,則數(shù)列{an}的前11項的積為定值.由于印刷問題,括號處的數(shù)模糊不清,已知命題P是真命題,則括號處的數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個半徑為
21
3
的球內(nèi)有一個各棱長都相等的內(nèi)接正三棱柱,則此三棱柱的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的a1=2,設(shè)其前n項和為Sn,且對任意的n∈N+,n≥2,an總是3Sn-4和2-
5
2
Sn-1
的等差中項,則下列各式成立的是(  )
①Sn•Sn+2>S2n+1;
②Sn•Sn+2<S2n+1;
③Sn+Sn+2<2Sn+1
④Sn+Sn+2>2Sn+1
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:①一條直線必是某個一次函數(shù)的圖象;②一次函數(shù)y=kx+k的圖象必是一條不過原點的直線;③若一條直線上所有點的坐標都是某個方程的解,則此方程叫做這條直線的方程;④以一個二元一次方程的解為坐標的點都在某條直線上,則這條直線叫做此方程的直線.其中正確的命題個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在梯形ABCD中,AB∥CD,∠ADC=90°,AB=2,DC=3,AD=1.E是DC上一點,且DE=1,連接AE,將△DAE沿AE折起到△D1AE的位置,使得∠D1AB=30°,設(shè)AC與BE的交點為O.
(1)試用基向量
AB
,
AE
,
AD1
表示向量
CD1

(2)求異面直線OD1與BC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2xsinα-1,x∈[-
3
2
,
1
2
],a∈[0,2π]
(1)當α=
π
6
時,求f(x)的最大值和最小值,并求使函數(shù)取得最值的x的值;
(2)求α的取值范圍,使得f(x)在區(qū)間[-
3
2
,
1
2
]上是單調(diào)函數(shù);
(3)當α∈[0,
π
2
]時,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為R,且滿足f(x+2)=-f(x).
(1)求證:f(x)是以4為周期的周期函數(shù);
(2)若f(x)為奇函數(shù),且當0≤x≤1時,f(x)=
1
2
x
,求當x∈[-1,3)時,f(x)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin(x-2π)-cos(π-x)=
1-
3
2
,x為第二象限角,求:
(1)sinx與cosx的值;
(2)角x的集合.

查看答案和解析>>

同步練習冊答案