(本小題滿分13分)
已知函數(shù).
(1)若,且,求的值;
(2)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間.

(1)  ;(2) ,

解析試題分析:(1)由,且,求出角的余弦值,再根據(jù)函數(shù),即可求得結(jié)論.
(2) 已知函數(shù),由正弦與余弦的二倍角公式,以及三角函數(shù)的化一公式,將函數(shù)化簡.根據(jù)三角函數(shù)周期的公式即可的結(jié)論.根據(jù)函數(shù)的單調(diào)遞增區(qū)間,通過解不等式即可得到所求的結(jié)論.
試題解析: (1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3f/f/1rbo14.png" style="vertical-align:middle;" />所以.所以 
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2e/b/tjatt.png" style="vertical-align:middle;" />,所以.由.所以的單調(diào)遞增區(qū)間為.
考點(diǎn):1.三角函數(shù)的性質(zhì).2.三角的恒等變形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)求函數(shù)的最小正周期及在區(qū)間上的最大值和最小值;
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的最小正周期;
(2)已知中,角所對(duì)的邊長分別為,若,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)為奇函數(shù),且,其中.
(1)求的值;
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某同學(xué)用“五點(diǎn)法”畫函數(shù)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入的部分?jǐn)?shù)據(jù)如下表:



















 
(1)請(qǐng)求出上表中的,并直接寫出函數(shù)的解析式;
(2)將的圖象沿軸向右平移個(gè)單位得到函數(shù),若函數(shù)(其中)上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/49/3/1d1gb3.png" style="vertical-align:middle;" />,且此時(shí)其圖象的最高點(diǎn)和最低點(diǎn)分別為,求夾角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分14分)已知.
(1)求的值;
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),若直線是函數(shù)圖象的一條切線.
(1)求函數(shù)的解析式;
(2)若函數(shù)圖象上的兩點(diǎn)、的橫坐標(biāo)依次為2和4,為坐標(biāo)原點(diǎn),求△的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知角θ的終邊上有一點(diǎn)P(x,-1)(x≠0),且tanθ=-x,求sinθ,cosθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),而.
(1)若最大,求能取到的最小正數(shù)值.
(2)對(duì)(1)中的,若,求.

查看答案和解析>>

同步練習(xí)冊(cè)答案