【題目】在我國古代著名的數(shù)學專著《九章算術》里有﹣段敘述:今有良馬與駑馬發(fā)長安至齊,齊去長安一千一百二十五里,良馬初日行一百零三里,日增十三里:駑馬初日行九十七里,日減半里,良馬先至齊,復還迎駑馬,二馬相逢, 問:需日相逢.

【答案】9
【解析】解:由題意知,良馬每日行的距離成等差數(shù)列, 記為{an},其中a1=103,d=13;
駑馬每日行的距離成等差數(shù)列,
記為{bn},其中b1=97,d=﹣0.5;
設第m天相逢,則a1+a2+…+am+b1+b2+…+bm
=103m+ +97m+ =2×1125,
解得:m=9.
故答案為:9.
良馬每日行的距離成等差數(shù)列,記為{an},其中a1=103,d=13;駑馬每日行的距離成等差數(shù)列,記為{bn},其中b1=97,d=﹣0.5.求和即可得到答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分圖象如圖.
(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象上所有點的縱坐標不變,橫坐標縮短為原來的 倍,再將所得函數(shù)圖象向右平移 個單位,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐E﹣ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(1)求棱錐C﹣ADE的體積;
(2)在線段DE上是否存在一點P,使AF∥平面BCE?若存在,求出 的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,PC⊥平面ABC,∠ACB=45°,BC=2 ,AB=2.
(1)求AC的長;
(2)若PC= ,點M在側棱PB上,且 = ,當λ為何值時,二面角B﹣AC﹣M的大小為30°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式組 表示的平面區(qū)域為D,若(x,y)∈D,|x|+2y≤a為真命題,則實數(shù)a的取值范圍是(
A.[10,+∞)
B.[11,+∞)
C.[13,+∞)
D.[14,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,且asinAsinB+bcos2A= a.
(1)求 ;
(2)若c2=a2+ b2 , 求角C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且a2+c2=b2﹣ac.
(1)求B的大;
(2)設∠BAC的平分線AD交BC于D,AD=2 ,BD=1,求cosC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小王為了鍛煉身體,每天堅持“健步走”,并用計步器進行統(tǒng)計.小王最近8天“健步走”步數(shù)的頻數(shù)分布直方圖(圖1)及相應的消耗能量數(shù)據(jù)表(表1)如下:

健步走步數(shù)(前步)

16

17

18

19

消耗能量(卡路里)

400

440

480

520

(Ⅰ)求小王這8天“健步走”步數(shù)的平均數(shù);
(Ⅱ)從步數(shù)為17千步,18千步,19千步的幾天中任選2天,求小王這2天通過“健步走”消耗的能量和不小于1000卡路里的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知圓M的圓心在直線y=﹣2x上,且圓M與直線x+y﹣1=0相切于點P(2,﹣1).
(1)求圓M的方程;
(2)過坐標原點O的直線l被圓M截得的弦長為 ,求直線l的方程.

查看答案和解析>>

同步練習冊答案