【題目】如圖,三棱臺中, 側(cè)面與側(cè)面是全等的梯形,若,且.

(Ⅰ)若, ,證明: ∥平面;

(Ⅱ)若二面角,求平面與平面所成的銳二面角的余弦值.

【答案】()見解析() .

【解析】試題分析:() 連接,由比例可得,進而得線面平行;

(Ⅱ)過點的垂線,建立空間直角坐標系,不妨設(shè),則求得平面的法向量為,設(shè)平面的法向量為,由求二面角余弦即可.

試題解析:

(Ⅰ)證明:連接,梯形, ,

易知:

,則

平面, 平面,

可得: ∥平面;

(Ⅱ)側(cè)面是梯形, ,

, ,

為二面角的平面角, ;

均為正三角形,在平面內(nèi),過點的垂線,如圖建立空間直角坐標系,不妨設(shè),則

,故點,

;

設(shè)平面的法向量為,則有: ;

設(shè)平面的法向量為,則有: ;

,

故平面與平面所成的銳二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩臺機床同時生產(chǎn)一種零件,10天中,兩臺機床每天出的次品數(shù)分別是

0

1

0

2

2

0

3

1

2

4

2

3

1

1

0

2

1

1

0

1

由此判斷性能較好的一臺是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)關(guān)于x的一元二次方程x2﹣2ax+b2=0.
(1)若a是從0、1、2、3四個數(shù)中任取的一個數(shù),b是從0、1、2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.
(2)若a是從區(qū)間[0,3]內(nèi)任取的一個數(shù),b是從區(qū)間[0,2]內(nèi)任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的是(
①“若x2+y2≠0,則x,y不全為零”的否命題;
②“正多邊形都相似”的逆命題;
③“若m>0,則x2+x﹣m=0有實根”的逆否命題;
④“若x﹣ 是有理數(shù),則x是無理數(shù)”的逆否命題.
A.①②③④
B.①③④
C.②③④
D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)在五次考試中數(shù)學(xué)成績統(tǒng)計用莖葉圖如表示如圖2所示,則甲的平均成績比乙的平均成績(填高、低、相等);甲成績的方差比乙成績的方差(填大、。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)命題的敘述,錯誤的個數(shù)為(
①若p∨q為真命題,則p∧q為真命題
②“x>5”是“x2﹣4x﹣5>0”的充分不必要條件
③命題p:x∈R,使得x2+x﹣1<0,則¬p:x∈R,使得x2+x﹣1≥0
④命題“若x2﹣3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2﹣3x+2≠0”
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓O的方程為x2+y2=5.
(1)P是直線y= x﹣5上的動點,過P作圓O的兩條切線PC、PD,切點為C、D,求證:直線CD過定點;
(2)若EF、GH為圓O的兩條互相垂直的弦,垂足為M(1,1),求四邊形EGFH面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】{an}滿足a1=4,且an=4﹣ (n>1),記bn=
(1)求證:{bn}為等差數(shù)列.
(2)求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù):f(x)=asin2x+cos2x且f( )=
(1)求a的值和f(x)的最大值;
(2)求f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案