已知曲線y=Asin(ωx+φ)(A>0,ω>0,|φ|≤
π
2
)上最高點(diǎn)為(2,
2
),該最高點(diǎn)到相鄰的最低點(diǎn)間曲線與x軸交于一點(diǎn)(6,0).求函數(shù)解析式,并求函數(shù)在x∈[-6,0]上的值域.
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì)
分析:由周期可得ω=
π
8
,由最值可得A=
2
,代點(diǎn)可得φ=
π
4
,可得解析式為y=
2
sin(
π
8
x+
π
4
),由x的范圍結(jié)合三角函數(shù)的性質(zhì)可得值域.
解答: 解:由題意可知周期T滿足
T
4
=
=4,解得ω=
π
8
,A=
2
,
∴sin(
π
8
×2+φ)=1,即
π
8
×2+φ=2kπ+
π
2
,k∈Z,
再由|φ|≤
π
2
可得φ=
π
4
,
∴函數(shù)的解析式為:y=
2
sin(
π
8
x+
π
4
),
當(dāng)-6≤x≤0時(shí),-
π
2
π
8
x+
π
4
π
4
,
∴-
2
2
sin(
π
8
x+
π
4
)≤1
∴函數(shù)的值域?yàn)椋篬-
2
,1]
點(diǎn)評(píng):本題考查三角函數(shù)的圖象和解析式,涉及三角函數(shù)的值域,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

不等式
1
x
1
2
的解集是(  )
A、{x|x<2}
B、{x|x>2}
C、{x|0<x<2}
D、{x|x<0或x>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正△ABC的邊長為a,在平面上求一點(diǎn)P,使PA2+PB2+PC2最小,并求其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在多面體ABCDE中,AB⊥平面ACD,AB=1,DE∥AB,AC=AD=CD=DE=2,F(xiàn)為CD的中點(diǎn).
(1)求證:AF⊥平面CDE;
(2)求平面ABC和平面CDE所成的銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示為函數(shù)y=Asin(ωx+φ)的圖象上的一段,則這個(gè)函數(shù)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2為橢圓的左右焦點(diǎn),拋物線以F1為頂點(diǎn),F(xiàn)2為焦點(diǎn),設(shè)P為橢圓與拋物線的一個(gè)交點(diǎn),橢圓離心率為e,且PF1=ePF2,求e的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

邊長為5cm的正方形EFGH是圓柱的軸截面,則從E點(diǎn)沿圓柱的側(cè)面到相對(duì)頂點(diǎn)G的最短距離是( 。
A、10
B、
5
2
π2+4
C、5
2
D、5
π2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在半徑為4的⊙O中,∠AOB=90°,D為OB的中點(diǎn),AD的延長線交⊙O于點(diǎn)E,則線段DE的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
49
+
y2
36
=1上一點(diǎn)P到橢圓一個(gè)焦點(diǎn)的距離為6,則P到另一個(gè)焦點(diǎn)的距離為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案