【題目】函數(shù)y=2+log2x(x≥1)的值域為

【答案】[2,+∞)
【解析】設(shè)y=2+t,t=log2x(x≥1),∵t=log2x在[1,+∞)上是單調(diào)增函數(shù),∴t≥log21=0.∴y=2+log2x的值域為[2,+∞).
故答案為:[2,+∞).
先求出真數(shù)部分的值域,再由底數(shù)為2即大于1得對數(shù)函數(shù)是增函數(shù),求函數(shù)的值域.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】慶華租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時,可全部租出,當(dāng)每輛車的月租金每增加50元時,未租出的車將會增加一輛,租出的車每輛每月需維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50.

1)當(dāng)每輛車的月租金定為3600元時,能租出多少輛車?

2)當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合M={1,3,a},N={2,a2}.若M∪N={1,2,3,4,16},則a的值為( )
A.0
B.1
C.2
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)當(dāng)時,求證:函數(shù)的圖像關(guān)于點(diǎn)對稱;

)當(dāng)時,求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三個實(shí)數(shù)a、bc成等差數(shù)列且它們的和為12,又a+2、b+2、c+5成等比數(shù)列,求出這三個實(shí)數(shù)ab、c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且a2=2b.

(1)求橢圓的方程;

(2)直線l:x﹣y+m=0與橢圓交于A,B兩點(diǎn),是否存在實(shí)數(shù)m,使線段AB的中點(diǎn)在圓x2+y2=5上,若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知l⊥平面α,直線m平面β.有下面四個命題:
①α∥βl⊥m;②α⊥βl∥m;③l∥mα⊥β;④l⊥mα∥β.
其中正確的命題是( )
A.①②
B.③④
C.②④
D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)平面直角坐標(biāo)系原點(diǎn)與極坐標(biāo)極點(diǎn)重合,x軸正半軸與極軸重合,若已知曲線C的極坐標(biāo)方程為,點(diǎn)F1、F2為其左、右焦點(diǎn),直線l的參數(shù)方程為t為參數(shù),t∈R).

求曲線C的標(biāo)準(zhǔn)方程和直線l的普通方程;

若點(diǎn)P為曲線C上的動點(diǎn),求點(diǎn)P到直線l的最大距離

查看答案和解析>>

同步練習(xí)冊答案