為處理含有某種雜質(zhì)的污水,要制造一個(gè)底寬為2米的無蓋長方體沉淀箱(如圖),污水從A孔流入,經(jīng)沉淀后從B孔流出,設(shè)箱體的長度為a米,高度為b米,已知流出的水中該雜質(zhì)的質(zhì)量分?jǐn)?shù)與ab的乘積ab成反比,現(xiàn)有制箱材料60平方米,問當(dāng)a、b各為多少米時(shí),經(jīng)沉淀后流出的水中該雜質(zhì)的質(zhì)量分?jǐn)?shù)最。A、B孔的面積忽略不計(jì))?
當(dāng)a=6,b=3時(shí),經(jīng)沉淀后流出的水中該雜質(zhì)的質(zhì)量分?jǐn)?shù)最小.
解法一:設(shè)經(jīng)沉淀后流出的水中該雜質(zhì)的質(zhì)量分?jǐn)?shù)為y,則由條件y=(k>0為比例系數(shù))其中a、b滿足2a+4b+2ab="60      " ①
要求y的最小值,只須求ab的最大值.
由①(a+2)(b+1)=32(a>0,b>0)且ab=30–(a+2b)
應(yīng)用重要不等式a+2b=(a+2)+(2b+2)–4≥
ab≤18,當(dāng)且僅當(dāng)a=2b時(shí)等號成立
a=2b代入①得a=6,b=3.
故當(dāng)且僅當(dāng)a=6,b=3時(shí),經(jīng)沉淀后流出的水中該雜質(zhì)的質(zhì)量分?jǐn)?shù)最小.
解法二:由2a+4b+2ab=60,得,
(0<a<30)則要求y的最小值只須求u的最大值.
,令u′=0得a=6
且當(dāng)0<a<6時(shí),u′>0,當(dāng)6<u<30時(shí)u′<0,
a=6時(shí)取最大值,此時(shí)b=3.
從而當(dāng)且僅當(dāng)a=6,b=3時(shí),y=取最小值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)a,b,c∈R+且a+b+c=1,試求:++的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知△ABC的三邊長分別為a、b、c,且滿足abc=
(1)是否存在邊長均為整數(shù)的△ABC?若存在,求出三邊長;若不存在,說明理由。
(2)若a>1,b>1,c>1,求出△ABC周長的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某校一年級為配合素質(zhì)教育,利用一間教室作為學(xué)生繪畫成果展覽室,為節(jié)約經(jīng)費(fèi),他們利用課桌作為展臺,將裝畫的鏡框放置桌上,斜靠展出,已知鏡框?qū)ψ烂娴膬A斜角為α(90°≤α<180°)鏡框中,畫的上、下邊緣與鏡框下邊緣分別相距a m,b m,(ab). 問學(xué)生距離鏡框下緣多遠(yuǎn)看畫的效果最佳?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,則下列不等式:①;②;③;④中,正確的不等式有(    )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知求函數(shù)的最小值  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正數(shù)滿足,求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知實(shí)數(shù),則的整數(shù)部分是(    )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

13.已知,則函數(shù)的最小值為          

查看答案和解析>>

同步練習(xí)冊答案