精英家教網 > 高中數學 > 題目詳情

【題目】若a和b是計算機在區(qū)間(0,2)上產生的均勻隨機數,則一元二次不等式ax2+4x+4b>0(a>0)的解集不是R的概率為(
A.
B.
C.
D.

【答案】A
【解析】解:由已知,a和b是計算機在區(qū)間(0,2)上產生的隨機數,對應區(qū)域的面積為4,
要函數f(x)=ax2+4x+4b的定義域為R(實數集),則ax2+4x+4b恒為正,
∴△=16﹣16ab<0,即ab>1;
在平面直角坐標系中畫出點(a,b)所在區(qū)域:

滿足ab>1的區(qū)域面積為: (2﹣ )dx=3﹣2ln2;
∴所求概率為P=1﹣ = ;
故選:A.
【考點精析】掌握幾何概型是解答本題的根本,需要知道幾何概型的特點:1)試驗中所有可能出現的結果(基本事件)有無限多個;2)每個基本事件出現的可能性相等.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知拋物線關于軸對稱,它的頂點在坐標原點,點在拋物線上.

(1)寫出該拋物線的標準方程及其準線方程;

(2)過點作兩條傾斜角互補的直線與拋物線分別交于不同的兩點,求證:直線的斜率是一個定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義:max{a,b}= ,若實數x,y滿足:|x|≤3,|y|≤3,﹣4x≤y≤ x,則max{|3x﹣y|,x+2y}的取值范圍是(
A.[ ,7]
B.[0,12]
C.[3, ]
D.[0,7]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓的右頂點與上頂點分別為,橢圓的離心率為,且過點.

(1)求橢圓的標準方程;

(2)如圖,若直線與該橢圓交于兩點,直線的斜率互為相反數.

①求證:直線的斜率為定值;

②若點在第一象限,設的面積分別為,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2013年1月,北京經歷了59年來霧霾天氣最多的一個月.據氣象局統計,北京市2013年1月1日至1月30日這30天里有26天出現霧霾天氣,《環(huán)境空氣質量指數(AQI)技術規(guī)定(試行)》如表1:

表1 空氣質量指數AQI分組表

AQI指數M

0~50

51~100

101~150

151~200

201~300

>300

級別

狀況

優(yōu)

輕度污染

中度污染

重度污染

嚴重污染

表2是某氣象觀測點記錄的連續(xù)4天里AQI指數M與當天的空氣水平可見度y(km)的情況,表3是某氣象觀測點記錄的北京市2013年1月1日至1月30日的AQI指數頻數分布表.

表2 AQI指數M與當天的空氣水平可見度y(km)的情況

AQI指數M

900

700

300

100

空氣水平可見度y(km)

0.5

3.5

6.5

9.5

表3 北京市2013年1月1日至1月30日AQI指數頻數分布表

AQI指數M

[0,200)

[200,400)

[400,600)

[600,800)

[800,1000]

頻數

3

6

12

6

3

(1)設x=,根據表2的數據,求出y關于x的線性回歸方程.

(2)小王在北京開了一家洗車店,經小王統計:當AQI指數低于200時,洗車店平均每天虧損約2000元;當AQI指數在200至400時,洗車店平均每天收入約4000元;當AQI指數不低于400時,洗車店平均每天收入約7000元.

①估計小王的洗車店在2013年1月份平均每天的收入;

②從AQI指數在[0,200)和[800,1000]內的這6天中抽取2天,求這2天的收入之和不低于5000元的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)滿足f(﹣x)=f(x),f(x+8)=f(x),且當x∈(0,4]時f(x)= ,關于x的不等式f2(x)+af(x)>0在[﹣2016,2016]上有且只有2016個整數解,則實數a的取值范圍是(
A.(﹣ ln6,ln2]
B.(﹣ln2,﹣ ln6)
C.(﹣ln2,﹣ ln6]
D.(﹣ ln6,ln2)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的頂點在原點,對稱軸是軸,且過點.

(Ⅰ)求拋物線的方程;

(Ⅱ)已知斜率為的直線軸于點,且與曲線相切于點,點在曲線上,且直線軸, 關于點的對稱點為,判斷點是否共線,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C經過P(4,-2),Q(1,3)兩點,且在y軸上截得的線段長為4,半徑小于5.

)求直線PQ與圓C的方程;

)若直線l∥PQ,直線l與圓C交于點AB且以線段AB為直徑的圓經過坐標原點,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司引進一條價值30萬元的產品生產線,經過預測和計算,得到生產成本降低萬元與技術改造投入萬元之間滿足:①的乘積成正比;②當時, ,并且技術改造投入比率, 為常數且

1)求的解析式及其定義域;

2)求的最大值及相應的值.

查看答案和解析>>

同步練習冊答案