解:(1)∵B1D⊥平面ABC,AC平面ABC,
∴B1D⊥AC,
又AC⊥BC,BC∩B1D=D,
∴AC⊥平面BB1C1C;
(2)∵AC⊥平面BB1C1C,AB1⊥BC1,
由三垂線定理可知,B1C⊥BC1,
∴平行四邊形BB1C1C為菱形,
此時,BC=BB1,
又∵B1D⊥BC,D為BC中點,B1C=B1B,
∴△BB1C為正三角形,
∴∠B1BC=60°,即α=60°;
(3)過C1作C1E⊥BC于E,則C1E⊥平面ABC,
過E作EF⊥AB于F,連結(jié)C1F,
由三垂線定理,得C1F⊥AB,
∴∠C1FE是所求二面角C1-AB-C的平面角,
設(shè)AC=BC=AA1=a,在Rt△CC1E中,
由∠C1BE=α=,C1E=a,
在Rt△BEF中,∠EBF=45°,EF=,
∴∠C1FE=45°,
故所求的二面角C1-AB-C為45°。
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
3 |
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
π | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com