10.為調(diào)查某社區(qū)居民的業(yè)余生活狀況,研究居民的休閑方式與性別的關(guān)系,隨機(jī)調(diào)查了該社區(qū)80名居民,得到下面的數(shù)據(jù)表:
休閑方式
性別
看電視運(yùn)動合計(jì)
101020
105060
總計(jì)206080
(Ⅰ)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“居民的休閑方式與性別有關(guān)系”?
(Ⅱ)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人以運(yùn)動為休閑方式的人數(shù)為隨機(jī)變量X.求X的分布列、數(shù)學(xué)期望和方差.
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

分析 (Ⅰ)根據(jù)樣本提供的2×2列聯(lián)表,計(jì)算K的觀測值K2,對照題目中的表格,得出統(tǒng)計(jì)結(jié)論;
(Ⅱ)由題意得:X~B(3,$\frac{5}{6}$),由此能求出X的數(shù)學(xué)期望和方差.

解答 解:(I)根據(jù)樣本提供的2×2列聯(lián)表得:
K2=60×20×20×6050×10-10×102=$\frac{80}{9}$≈8.889;…(2分)
K2>6.635,
所以有99%的把握認(rèn)為“居民的休閑方式與性別有關(guān)”…(5分)
(Ⅱ)由題意得:X~B(3,$\frac{5}{6}$),
且 P(X=k)=${C}_{3}^{k}$($\frac{1}{6}$)3-k($\frac{5}{6}$)k,k=0,1,2,3…(8分)
所以,分布列為:

X0123
P$\frac{1}{216}$ $\frac{15}{216}$ $\frac{75}{216}$ $\frac{125}{216}$
由服從X~B(n,p)的二項(xiàng)分布事件的期望E(X),E(X)=np=3×$\frac{5}{6}$=$\frac{5}{2}$,
E(X)=$\frac{5}{2}$,∴…(10分)
DX=np(1-p)=3×$\frac{5}{6}$×$\frac{1}{6}$=$\frac{5}{12}$.
∴DX=$\frac{5}{12}$.…(12分)

點(diǎn)評 本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問題,獨(dú)立性檢驗(yàn)是考查兩個(gè)分類變量是否有關(guān)系,并且能較精確的給出這種判斷的可靠程度的一種重要的統(tǒng)計(jì)方法,主要是通過K2的觀測值與臨界值的比較解決的,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.不等式9x2+6x+1≤0的解集是(  )
A.{x|x≠-$\frac{1}{3}$}B.{x|-$\frac{1}{3}$≤x≤$\frac{1}{3}$}C.D.{x|x=-$\frac{1}{3}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.直線x-$\sqrt{3}$y+3=0的傾斜角為( 。
A.150°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=ax3-x+c(a,c為常數(shù)),且f′(1)=2,則a的值為( 。
A.1B.$\sqrt{2}$C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}為等差數(shù)列,數(shù)列{bn}滿足bn=an+n+4,若b1,b3,b6成等比數(shù)列,且b2=a8
(1)求an,bn
(2)求數(shù)列{$\frac{1}{{a}_{n}•_{n}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=1+2sinxcosx-2sin2x(x∈R).
(1)求函數(shù)f(x)的最小正周期;
(2)解不等式:f(x)≥$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為60°,則|$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖所示,PA,PB分別切圓O于A,B,過AB與OP的交點(diǎn)M作弦CD,連結(jié)PC,求證:$\frac{PC}{CM}=\frac{OD}{OM}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在平面上,過點(diǎn)P作直線l的垂線所得的垂足稱為點(diǎn)P在直線l上的投影.若點(diǎn)P(-1,0)在直線ax-y-a-2=0上的投影是Q,則Q的軌跡方程是x2+(y+1)2=2.

查看答案和解析>>

同步練習(xí)冊答案