【題目】已知等差數(shù)列{an}的前n(n∈N*)項(xiàng)和為Sn , a3=3,且λSn=anan+1 , 在等比數(shù)列{bn}中,b1=2λ,b3=a15+1. (Ⅰ)求數(shù)列{an}及{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{cn}的前n(n∈N*)項(xiàng)和為Tn , 且 ,求Tn

【答案】解:(Ⅰ)∵λSn=anan+1 , a3=3,∴λa1=a1a2 , 且λ(a1+a2)=a2a3 , ∴a2=λ,a1+a2=a3=3,①
∵數(shù)列{an}是等差數(shù)列,∴a1+a3=2a2 , 即2a2﹣a1=3,②
由①②得a1=1,a2=2,∴an=n,λ=2,
∴b1=4,b3=16,∴{bn}的公比q= =±2,
或bn=(﹣2)n+1
(Ⅱ)由(I)知 ,∴ = ,
∴Tn=
=1+
=
【解析】(I)分別令n=1,2列方程,再根據(jù)等差數(shù)列的性質(zhì)即可求出a1 , a2得出an , 計(jì)算b1 , b3得出公比得出bn;(II)求出cn , 根據(jù)裂項(xiàng)法計(jì)算Tn

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,直線y= x(a≠0)為曲線y=f(x)的一條切線.
(1)求實(shí)數(shù)a的值;
(2)用min{m,n}表示m,n中的最小值,設(shè)函數(shù)g(x)=min{f(x),x﹣ }(x>0),若函數(shù)h(x)=g(x)﹣bx2為增函數(shù),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,集合M={0,1,2,3,4,5,6,7,8},現(xiàn)從M中任取兩個(gè)不同元素m,n,則f(m)f(n)=0的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】河南多地遭遇年霾,很多學(xué)校調(diào)整元旦放假時(shí)間,提前放假讓學(xué)生們?cè)诩叶泠玻嵵菔懈鶕?jù)《鄭州市人民政府辦公廳關(guān)于將重污染天氣黃色預(yù)警升級(jí)為紅色預(yù)警的通知》,自12月29日12時(shí)將黃色預(yù)警升級(jí)為紅色預(yù)警,12月30日0時(shí)啟動(dòng)Ⅰ級(jí)響應(yīng),明確要求“幼兒園、中小學(xué)等教育機(jī)構(gòu)停課,停課不停學(xué)”.學(xué)生和家長(zhǎng)對(duì)停課這一舉措褒貶不一,有為了健康贊成的,有怕耽誤學(xué)習(xí)不贊成的,某調(diào)查機(jī)構(gòu)為了了解公眾對(duì)該舉措的態(tài)度,隨機(jī)調(diào)查采訪了50人,將調(diào)查情況整理匯總成如表:

年齡(歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75]

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

6

9

6

3

4


(Ⅰ)請(qǐng)?jiān)趫D中完成被調(diào)查人員年齡的頻率分布直方圖;
(Ⅱ)若從年齡在[25,35),[65,75]兩組采訪對(duì)象中各隨機(jī)選取2人進(jìn)行深度跟蹤調(diào)查,選中4人中不贊成這項(xiàng)舉措的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠BAC=60°,AB=5,AC=4,D是AB上一點(diǎn),且 =5,則| |等于(
A.2
B.4
C.6
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,已知三點(diǎn)O(0,0),A(2, ),B(2 , ).
(1)求經(jīng)過(guò)O,A,B的圓C1的極坐標(biāo)方程;
(2)以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,圓C2的參數(shù)方程為 (θ是參數(shù)),若圓C1與圓C2外切,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐P﹣ABCD中,AD∥BC,AD=AB=DC= BC=1,E是PC的中點(diǎn),面PAC⊥面ABCD.
(Ⅰ)證明:ED∥面PAB;
(Ⅱ)若PC=2,PA= ,求二面角A﹣PC﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.
(1)設(shè)點(diǎn)E為PD的中點(diǎn),求證:CE∥平面PAB;
(2)線段PD上是否存在一點(diǎn)N,使得直線CN與平面PAC所成的角θ的正弦值為 ?若存在,試確定點(diǎn)N的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足:a1=1且an+1=2an+1,n∈N* , 設(shè)bn=n(an+1),則數(shù)列{bn}的前n項(xiàng)和Sn=

查看答案和解析>>

同步練習(xí)冊(cè)答案