如圖,四棱錐中,底面是菱形,,,的中點(diǎn),點(diǎn)在側(cè)棱上.

1)求證:⊥平面;

2)若的中點(diǎn),求證://平面;

3)若,試求的值.

 

【答案】

1)詳見解析(2)詳見解析(3

【解析】

試題分析:(1)由線面垂直判定定理,要證線面垂直,需證垂直平面內(nèi)兩條相交直線,由,的中點(diǎn),易得垂直于,再由底面是菱形,得三角形為正三角形,所以垂直于,(2)由線面平行判定定理,要證線面平行,需證平行于平面內(nèi)一條直線,根據(jù)的中點(diǎn),聯(lián)想到取AC中點(diǎn)O所以OQ為△PAC中位線.所以OQ // PA注意在寫定理?xiàng)l件時,不能省,要全面.例如,線面垂直判定定理中有五個條件,線線垂直兩個,相交一個,線在面內(nèi)兩個;線面平行判定定理中有三個條件,平行一個,線在面內(nèi)一個,線在面外一個,(3)研究體積問題關(guān)鍵在于確定高,由于兩個底面共面,所以求的值就轉(zhuǎn)化為求對應(yīng)高的長度比.

試題解析:(1)因?yàn)?/span>EAD的中點(diǎn),PA=PD,所以ADPE

因?yàn)榈酌?/span>ABCD是菱形,∠BAD=,所以AB=BD,又因?yàn)?/span>EAD的中點(diǎn),所以 ADBE

因?yàn)?/span>PEBE=E,所以AD⊥平面PBE4

2)連接ACBD于點(diǎn)O,連結(jié)OQ.因?yàn)?/span>OAC中點(diǎn),

QPC的中點(diǎn),所以OQ為△PAC中位線.所以OQ//PA7

因?yàn)?/span>PA平面BDQ,OQ平面BDQ.所以PA//平面BDQ9

3)設(shè)四棱錐P-BCDE,Q-ABCD的高分別為,,所以VP-BCDE=SBCDE,VQ-ABCD=SABCD10

因?yàn)?/span>VP-BCDE=2VQ-ABCD,且底面積SBCDE=SABCD12

所以,因?yàn)?/span>,所以 14

考點(diǎn):線面垂直判定定理, 線面平行判定定理,錐的體積.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐中,底面ABCD是菱形,SA=SD=
39
AD=2
3
,且S-AD-B大小為120°,∠DAB=60°.
(1)求異面直線SA與BD所成角的正切值;
(2)求證:二面角A-SD-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山西省高三第一次月考摸底理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,四棱錐中,底面為平行四邊形,,,⊥底面.①證明:平面平面; ②若二面角,求與平面所成角的正弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省五校聯(lián)盟模擬考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

如圖,四棱錐中,底面為平行四邊形,,,⊥底面.

(1)證明:平面平面;

(2)若二面角,求與平面所成角的正弦值。

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黑龍江省10-11學(xué)年高一下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題

(本小題滿分12分)如圖,四棱錐中,底面為平行四邊形,,底面.

(1)證明:;

(2)若求二面角的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆山東省濟(jì)寧市高二3月月考理科數(shù)學(xué)試卷 題型:解答題

如圖,四棱錐中,底面為平行四邊形,,⊥底面.

(1)證明:平面平面;

(2)若二面角,求與平面所成角的正弦值。

 

查看答案和解析>>

同步練習(xí)冊答案