【題目】重慶八中大學城校區(qū)與本部校區(qū)之間的駕車單程所需時間為,只與道路暢通狀況有關,對其容量為500的樣本進行統(tǒng)計,結(jié)果如下:
(分鐘) | 25 | 30 | 35 | 40 |
頻數(shù)(次) | 100 | 150 | 200 | 50 |
以這500次駕車單程所需時間的頻率代替某人1次駕車單程所需時間的概率.
(1)求的分布列與;
(2)某天有3位教師獨自駕車從大學城校區(qū)返回本部校區(qū),記表示這3位教師中駕車所用時間少于的人數(shù),求的分布列與;
(3)下周某天張老師將駕車從大學城校區(qū)出發(fā),前往本部校區(qū)做一個50分鐘的講座,結(jié)束后立即返回大學城校區(qū),求張老師從離開大學城校區(qū)到返回大學城校區(qū)共用時間不超過120分鐘的概率.
【答案】(1)分布列見解析,;(2)分布列見解析,;(3).
【解析】
試題分析:(1)用頻數(shù)除以,得到頻率,即得到的分布列,求出期望,進而求得;(2)次獨立重復實驗,每次成功的概率為,故滿足二項分布,利用二項分布的知識求得分布列和數(shù)學期望;(3)除去分鐘講座事件,還有至多分鐘時間分配在來回的路上,故可能的事件有,
共種,利用概率加法,求得概率為.
試題解析:
(1)以頻率估計頻率得的分布列為:
25 | 30 | 35 | 40 | |
0.2 | 0.3 | 0.4 | 0.1 |
∴(分鐘),
.
(2),().
0 | 1 | 2 | 3 | |
.
(3)設,分別表示往返所需時間,設事件表示“從離開大學城校區(qū)到返回大學城校區(qū)共用時間不超過120分鐘”,則
.
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列中,已知,,,設為的前項和.
(1)求證:數(shù)列是等差數(shù)列;
(2)求;
(3)是否存在正整數(shù),,,使成等差數(shù)列?若存在,求出,,的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)設函數(shù),其中,曲線過點,且在點處的切線方程為.
(I)求的值;
(II)證明:當時,;
(III)若當時,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量(單位: )和年利潤(單位:千元)的影響,對近8年的年宣傳費和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
表中,.
(1)根據(jù)散點圖判斷, 與哪一個適宜作為年銷售量關于年宣傳費的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關于的回歸方程;
(3)已知這種產(chǎn)品的年利潤與、的關系為.根據(jù)(2)的結(jié)果要求:年宣傳費為何值時,年利潤最大?
附:對于一組數(shù)據(jù), ,…, 其回歸直線的斜率和截距的最小二乘估計分別為, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,E、F分別是BB1、CD的中點.
(Ⅰ)證明:AD⊥D1F;
(Ⅱ)求AE與D1F所成的角;
(Ⅲ)證明:面AED⊥面A1FD1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)已知函數(shù)在其定義域內(nèi)有兩個不同的極值點.
(1)求實數(shù)的取值范圍;
(2)設兩個極值點分別為,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若曲線在處的切線的方程為,求實數(shù)的值;
(2)設,若對任意兩個不等的正數(shù),都有恒成立,求實數(shù)的取值范圍;
(3)若在上存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐中,平面平面,為等邊三角形,
且,,分別為,的中點.
(I)求證:平面;
(II)求證:平面平面;
(III)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某投資公司計劃投資A,B兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預測,A產(chǎn)品的利潤y1與投資金額x的函數(shù)關系為y1=18-,B產(chǎn)品的利潤y2與投資金額x的函數(shù)關系為y2=(注:利潤與投資金額單位:萬元).
(1)該公司已有100萬元資金,并全部投入A,B兩種產(chǎn)品中,其中x萬元資金投入A產(chǎn)品,試把A,B兩種產(chǎn)品利潤總和表示為x的函數(shù),并寫出定義域;
(2)在(1)的條件下,試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com