【題目】已知定義在R上的偶函數(shù)f(x)滿足f(x+2)f(x)=1對于x∈R恒成立,且f(x)>0,則f(2015)= .
【答案】1
【解析】解:∵偶函數(shù)f(x)滿足f(x+2)f(x)=1,
∴f(x+2)= ,
∴f(x+4)=f(x),
所以函數(shù)的周期T=4,f(2015)=f(3);
令x=﹣1,f(1)f(﹣1)=1=f2(1),
又f(x)>0,
∴f(1)=1,f(3)= =1;
∴f(2015)=1.
所以答案是:1.
【考點精析】本題主要考查了函數(shù)奇偶性的性質(zhì)的相關知識點,需要掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】通過對某城市一天內(nèi)單次租用共享自行車的時間分鐘到鐘的人進行統(tǒng)計,按照租車時間, , , , 分組做出頻率分布直方圖,并作出租用時間和莖葉圖(圖中僅列出了時間在, 的數(shù)據(jù)).
(1)求的頻率分布直方圖中的;
(2)從租用時間在分鐘以上(含分鐘)的人數(shù)中隨機抽取人,設隨機變量表示所抽取的人租用時間在內(nèi)的人數(shù),求隨機變量的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】電視傳媒公司為了解世界杯期間某地區(qū)電視觀眾對《戰(zhàn)斗吧足球》節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該節(jié)目時間的頻率分布直方圖:
(注:頻率分布直方圖中縱軸表示,例如,收看時間在分鐘的頻率是)
將日均收看該足球節(jié)目時間不低于40分鐘的觀眾稱為“足球迷”.
(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料判斷是否可以認為“足球迷”與性別有關?如果有關,有多大把握?
非足球迷 | 足球迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“足球迷”人數(shù)為.若每次抽取的結(jié)果是相互獨立的,求的分布列、均值和方差.
附:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的方程為3x+4y-12=0,求滿足下列條件的直線l′的方程:
(1)過點(-1,3),且與l平行的直線方程為________
(2)過點(-1,3),且與l垂直的直線方程為__________
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+1= (n∈N*),若bn+1=(n﹣2λ)( +1)(n∈N*),b1=﹣λ,且數(shù)列{bn}是單調(diào)遞增數(shù)列,則實數(shù)λ的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知奇函數(shù)f(x)定義域為(﹣∞,0)∪(0,+∞),f′(x)為其導函數(shù),且滿足以下條件①x>0時,f′(x)< ;②f(1)= ;③f(2x)=2f(x),則不等式 <2x2的解集為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= x2﹣2ax+lnx(a∈R),x∈(1,+∞).
(1)若函數(shù)f(x)有且只有一個極值點,求實數(shù)a的取值范圍;
(2)對于函數(shù)f(x)、f1(x)、f2(x),若對于區(qū)間D上的任意一個x,都有f1(x)<f(x)<f2(x),則稱函數(shù)f(x)是函數(shù)f1(x)、f2(x)在區(qū)間D上的一個“分界函數(shù)”.已知f1(x)=(1﹣a2)lnx,f2(x)=(1﹣a)x2 , 問是否存在實數(shù)a,使得f(x)是函數(shù)f1(x)、f2(x)在區(qū)間(1,+∞)上的一個“分界函數(shù)”?若存在,求實數(shù)a的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等差數(shù)列{an}中,已知3a5=7a10 , 且a1<0,則數(shù)列{an}前n項和Sn(n∈N*)中最小的是( )
A.S7或S8
B.S12
C.S13
D.S14
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】拋擲兩枚骰子,求:
(1)點數(shù)之和為4的倍數(shù)的概率;
(2)點數(shù)之和大于5而小于10的概率;
(3)同時拋兩枚骰子,求至少有一個5點或者6點的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com