(2012•朝陽(yáng)區(qū)一模)已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-1(n∈N*),則a5( �。�
分析:先根據(jù)a1=S1,an=Sn-Sn-1(n≥2)求出數(shù)列{an}的通項(xiàng)公式,再將n=5代入可求出所求.
解答:解:當(dāng)n=1時(shí),a1=S1=2a1-1,∴a1=1.
當(dāng)n>1時(shí),Sn=2an-1,∴Sn-1=2an-1-1,
∴Sn-Sn-1=2an-2an-1,
∴an=2an-2an-1,
∴an=2an-1,
an
an-1
=2,
∴{an}是首項(xiàng)為1,公比為2的等比數(shù)列,∴an=2n-1,n∈N*
∴a5=25-1=16.
故選B.
點(diǎn)評(píng):本題主要考查了數(shù)列的概念及簡(jiǎn)單表示法,以及等差數(shù)列的通項(xiàng)公式,同時(shí)考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•朝陽(yáng)區(qū)一模)某次有1000人參加的數(shù)學(xué)摸底考試,其成績(jī)的頻率分布直方圖如圖所示,規(guī)定85分及其以上為優(yōu)秀.
(Ⅰ)下表是這次考試成績(jī)的頻數(shù)分布表,求正整數(shù)a,b的值;
區(qū)間 [75,80) [80,85) [85,90) [90,95) [95,100]
人數(shù) 50 a 350 300 b
(Ⅱ)現(xiàn)在要用分層抽樣的方法從這1000人中抽取40人的成績(jī)進(jìn)行分析,求其中成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù);
(Ⅲ)在(Ⅱ)中抽取的40名學(xué)生中,要隨機(jī)選取2名學(xué)生參加座談會(huì),記“其中成績(jī)?yōu)閮?yōu)秀的人數(shù)”為X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•朝陽(yáng)區(qū)一模)函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意的x∈R,都有f(x+2)=f(x).當(dāng)0≤x≤1時(shí),f(x)=x2.若直線y=x+a與函數(shù)y=f(x)的圖象有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)a的值為( �。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•朝陽(yáng)區(qū)一模)已知函數(shù)f(x)=
(
1
2
)
x
+
3
4
,
x≥2
log2x,0<x<2
若函數(shù)g(x)=f(x)-k有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是
3
4
,1)
3
4
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•朝陽(yáng)區(qū)一模)某企業(yè)員工500人參加“學(xué)雷鋒”志愿活動(dòng),按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如圖所示.
(Ⅰ)下表是年齡的頻數(shù)分布表,求正整數(shù)a,b的值;
區(qū)間 [25,30) [30,35) [35,40) [40,45) [45,50]
人數(shù) 50 50 a 150 b
(Ⅱ)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,年齡在第1,2,3組的人數(shù)分別是多少?
(Ⅲ)在(Ⅱ)的前提下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動(dòng),求至少有1人年齡在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•朝陽(yáng)區(qū)一模)復(fù)數(shù)
10i
1-2i
=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案