已知定義域?yàn)閇0,1]的函數(shù)f(x)同時(shí)滿(mǎn)足下列三個(gè)條件:
①對(duì)任意的x∈[0,1],總有f(x)≥0;
②f(1)=1;
③若x1≥0,x2≥0,且x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)成立
則稱(chēng)函數(shù)f(x)為“友誼函數(shù)”.
(1)已知f(x)是“友誼函數(shù)”,求f(0)的值;
(2)函數(shù)g(x)=2x-1在區(qū)間[0,1]上是否是“友誼函數(shù)”?說(shuō)明你的理由.
(3)已知f(x)是“友誼函數(shù)”,假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0
求證:f(x0)=x0
考點(diǎn):抽象函數(shù)及其應(yīng)用
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)賦值可考慮取x1=x2=0,代入f(x1+x2)≥f(x1)+f(x2),結(jié)合已知f(0)≥0,可求f(0)
(2)要判斷函數(shù)g(x)=2x-1在區(qū)間[0,1]上是否為“友誼函數(shù),只要檢驗(yàn)函數(shù)g(x)=2x-1在[0,1]上是否滿(mǎn)足①g(x)>0;②g(1)=1;③x1≥0,x2≥0,且x1+x2≤1,有g(shù)(x1+x2)≥g(x1)+g(x2)即可.
(3)利用反正法,先假設(shè)f(x0)≠x0,然后分f(x0)>x0,f(x0)<x0,兩種情況分別進(jìn)行論證即可
解答: 解:(1)令x1=1,x2=0,則x1+x2=1∈[0,1].
由③,得f(1)≥f(0)+f(1),即f(0)≤0.
又由①,得f(0)≥0,所以f(0)=0.
(2)g(x)=2x-1是友誼函數(shù).
顯然g(x)=2x-1在[0,1]上滿(mǎn)足①g(x)≥0;②g(1)=1;下面證明也滿(mǎn)足③:若x1≥0,x2≥0,且x1+x2≤1,
即x1,x2∈[0,1],x1+x2∈[0,1],有2x1≥1,2x2≥1.
則(2x1-1)(2x2-1)≥0.
即g(x1+x2)-[g(x1)+g(x2)]=2x1+x2-1-[(2x1-1)+(2x2-1)]=(2x1-1)(2x2-1)≥0,
故g(x)=2x-1滿(mǎn)足條件①﹑②﹑③
故g(x)在[0,1]上為友誼函數(shù).
(3)取0≤x1<x2≤1,則0<x2-x1≤1.
所以f(x2)=f(x2-x1+x1)≥f(x2-x1)+f(x1)≥f(x1
故有f(x1)≤f(x2).
假設(shè)f(x0)≠x0,
若f(x0)>x0,則f[f(x0)]≥f(x0)>x0
若f(x0)<x0,則f[f(x0)]≤f(x0)<x0
都與題設(shè)矛盾,因此f(x0)=x0
點(diǎn)評(píng):本題主要是在新定義下對(duì)抽象函數(shù)進(jìn)行考查,在做關(guān)于新定義的題目時(shí),一定要先研究定義,在理解定義的基礎(chǔ)上再做題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知矩陣m=
3-2
2-2
,α=
-1
4
,試計(jì)算:M10α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知△OFQ的面積為S,且
OF
FQ
=1,設(shè)|
OF
|=c,S=
14
4
c,若以O(shè)為中心,F(xiàn)為焦點(diǎn)的雙曲線(xiàn)經(jīng)過(guò)點(diǎn)Q,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求|
OQ
|最小時(shí)此雙曲線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=
x2
x4+2
(x≠0)的最大值及相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圖甲為函數(shù)y=f(x)的圖象,則圖乙中的圖象對(duì)應(yīng)的函數(shù)可能為( 。
A、y=|f(x)|
B、y=f(|x|)
C、y=f(-|x|)
D、y=-f(-|x|)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校招募了8名男志愿者和12名女志愿者,將這20名志愿者的身高(單位:cm)編成如下莖葉圖:若身高在180cm以上(包括180cm)定義為“高個(gè)子”,身高在180cm以下(不包括180cm)定義為“拿高個(gè)子”,如果用分層抽樣的方法從“高小子”和“攀高個(gè)子”中抽取5人,再?gòu)倪@5人中選2人,那么至少有一人是“高個(gè)子”的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義max{a,b}=
a(a≥b)
b(a<b)
,設(shè)實(shí)數(shù)x,y滿(mǎn)足約束條件
-2≤x≤2
-2≤y≤1
x-2y+2≥0
,且z=max{3x+y,2x-y},則z的取值范圍為( 。
A、[-
5
2
,6]
B、[-4,6]
C、[-8,7]
D、[-4,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象在y軸上的截距為1,它在y軸右側(cè)的第一個(gè)最大值點(diǎn)和最小值點(diǎn)分別為(x0,2)和(x0+3π,-2).
(1)試求f(x)的解析式;
(2)將y=f(x)圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的
1
3
倍(縱坐標(biāo)不變),然后再將新的圖象向軸正方向平移
π
3
個(gè)單位,得到函數(shù)y=g(x)的圖象.寫(xiě)出函數(shù)y=g(x)的解析式并用列表作圖的方法畫(huà)出y=g(x)在長(zhǎng)度為一個(gè)周期的閉區(qū)間上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從集合{-1,1,2}中隨機(jī)選取一個(gè)數(shù)記為m,從集合{-1,2}中隨機(jī)選取一個(gè)數(shù)記為n,則方程
x2
m
+
y2
n
=1表示雙曲線(xiàn)的概率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案