已知數(shù)列{an}滿(mǎn)足(n+2)an+1=(n+1)an,且a2=
1
3
,則an=( 。
A、
1
n+1
B、
1
2n-1
C、
n-1
2n-1
D、
n-1
n+1
考點(diǎn):數(shù)列遞推式
專(zhuān)題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:將(n+2)an+1=(n+1)an化簡(jiǎn)整理得出
an+1
an
=
n+1
n+2
,利用累積法求an
解答: 解:∵(n+2)an+1=(n+1)an,
an+1
an
=
n+1
n+2
,
a3
a2
=
3
4
,
a4
a3
=
4
5
,…
an
an-1
=
n
n+1

以上各式兩邊分別相乘得an=
1
n+1
(n≥2),
由n=1時(shí)也適合上式,所以an=
1
n+1
,
故選:A.
點(diǎn)評(píng):本題考查數(shù)列通項(xiàng)求解,考查學(xué)生的計(jì)算能力,利用累積法是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面上取定一點(diǎn)O,從O出發(fā)引一條射線Ox,再取定一個(gè)長(zhǎng)度單位及計(jì)算角度的正方向(取逆時(shí)針?lè)较驗(yàn)檎头Q(chēng)建立了一個(gè)極坐標(biāo)系,這樣,平面上任一點(diǎn)P的位置可用有序數(shù)對(duì)(ρ,θ)確定,其中ρ表示線段OP的長(zhǎng)度,θ表示從Ox到OP的角度,在極坐標(biāo)下,給出下列命題:
(1)平面上的點(diǎn)A(2,-
π
6
)與B(2,2kπ+
11π
6
)(k∈Z)重合;
(2)方程θ=
π
3
和方程ρsinθ=2分別都表示一條直線;
(3)動(dòng)點(diǎn)A在曲線ρ(cos2
θ
2
-
1
2
)=2上,則點(diǎn)A與點(diǎn)O的最短距離為2;
(4)已知兩點(diǎn)A(4,
3
),B(
4
3
3
π
6
),動(dòng)點(diǎn)C在曲線ρ=8上,則△ABC面積的最大值為
40
3
3

其中正確命題的序號(hào)為
 
(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知向量
a
=(x,y-2),
b
=(kx,y+2)(k∈R),若|
a
+
b
|=|
a
-
b
|.
(1)求動(dòng)點(diǎn)M(x,y)的軌跡T的方程,并說(shuō)明該方程表示的曲線的形狀;
(2)當(dāng)k=
4
3
時(shí),已知F1(0,-1)、F2(0,1),點(diǎn)P軌跡T在第一象限的一點(diǎn),且滿(mǎn)足|
PF1
|-|
PF2
|=1,若點(diǎn)Q是軌跡T上不同于點(diǎn)P的另一點(diǎn),問(wèn)是否存在以PQ為直徑的圓G過(guò)點(diǎn)F2,若存在,求出圓G的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若方程
x2
|a|-1
-
y2
2a+3
=1表示的橢圓,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①?gòu)膭蛩賯鬟f的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣;
②樣本方差反映了樣本數(shù)據(jù)與樣本平均值的偏離程度;
③在回歸分析模型中,殘差平方和越小,說(shuō)明模型的擬合效果越好;
④在回歸直線方程
^y
=0.1x+10中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量
^y
增加0.1個(gè)單位.
其中正確命題的個(gè)數(shù)是
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在銳角△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,向量
m
=(2a,1),
n
=(cosC,c-2b),且m⊥n.
(1)求角A的大;
(2)求函數(shù)f(C)=1-
2cos2C
1+tanC
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f1(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的一段圖象如圖所示,且函數(shù)過(guò)點(diǎn)(0,1)
(1)求函數(shù)f1(x)的解析式;
(2)將函數(shù)y=f1(x)的圖象向右平移
π
4
個(gè)單位長(zhǎng)度,得到函數(shù)y=f2(x),求y=f1(x)+f2(x)的最大值,并求此時(shí)自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x,x>0
x+1,x≤0
,若f(a)+f(1)=0,則實(shí)數(shù)a的值等于(  )
A、3B、1C、-3D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)內(nèi)角滿(mǎn)足2B=A+C,且AB=1,BC=4,則邊BC上的中線AD的長(zhǎng)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案