中心在原點,焦點在x軸上,焦距等于6,離心率等于數(shù)學(xué)公式,則橢圓的方程是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
C
分析:根據(jù)焦距求得c,進而利用離心率求得a,則b可求得,進而求得橢圓的方程.
解答:依題意
所以,所求橢圓方程為
故選C.
點評:本題主要考查了橢圓的簡單性質(zhì).考查了橢圓的基礎(chǔ)知識的掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓w的中心在原點,焦點在x軸上,長軸長為4,離心率為
6
3
,△ABC的頂點A,B在橢圓w上,C在直線l:y=x+2上,且AB∥l.
(1)求橢圓w的方程;
(2)當AB邊通過坐標原點O時,求AB的長及△ABC的面積;
(3)當∠ABC=90°,且斜邊AC的長最大時,求AB所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,函數(shù)y=f(x)的圖象是中心在原點、焦點在x軸上的橢圓的兩段弧,則不等式f(x)<f(-x)+x的解集為( 。
A、{x|-
2
<x<0或
2
<x≤2}
B、{x|-2≤x<-
2
2
<x≤2}
C、{x|-2≤x<-
2
2
2
2
<x≤2}
D、{x|-
2
<x<
2
,且x≠0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,函數(shù)y=f(x)的圖象是中心在原點,焦點在x軸上的橢圓的兩段弧,則不等式f(x)<f(-x)+x的解集為( 。
A、{
2
2
<x≤2
2
2
<x≤2
}
B、{x|-2≤x<
2
2
<x≤2}
C、{x|-
2
<x<0
2
<x≤2
}
D、{x|-
2
<x<
2
,且x≠0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年山西省孝義市高二第二次月考考試數(shù)學(xué)文卷 題型:解答題

(12分)

    已知橢圓中心在原點,焦點在x軸上,長軸長等于12,離心率為.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)過橢圓左頂點作直線l垂直于x軸,若動點M到橢圓右焦點的距離比它到直線l的距離小4,求點M的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:東城區(qū)模擬 題型:解答題

已知橢圓w的中心在原點,焦點在x軸上,長軸長為4,離心率為
6
3
,△ABC的頂點A,B在橢圓w上,C在直線l:y=x+2上,且ABl.
(1)求橢圓w的方程;
(2)當AB邊通過坐標原點O時,求AB的長及△ABC的面積;
(3)當∠ABC=90°,且斜邊AC的長最大時,求AB所在直線的方程.

查看答案和解析>>

同步練習(xí)冊答案