【題目】用an表示自然數(shù)n的所有因數(shù)中最大的那個(gè)奇數(shù),例如:9的因數(shù)有1,3,9,則a9=9;10的因數(shù)有1,2,5,10,則a10=5,記數(shù)列{an}的前n項(xiàng)和為Sn , 則S =

【答案】
【解析】解:令an=g(n). 由an的定義易知g(n)=g(2n),且若n為奇數(shù)則g(n)=n
令f(n)=g(1)+g(2)+g(3)+…g(2n﹣1)
則f(n+1)=g(1)+g(2)+g(3)+…g(2n+1﹣1)=1+3+…+(2n+1﹣1)+g(2)+g(4)+…+g(2n+1﹣2)
= 2n[1+(2n+1﹣1)]+g(1)+g(2)+…+g(2n+1﹣2)=4n+f(n)
即f(n+1)﹣f(n)=4n
分別取n為1,2,…,n并累加得f(n+1)﹣f(1)=4+42+…+4n= = (4n﹣1)
又f(1)=g(1)=1,∴f(n+1)= (4n﹣1)+1.
∴S =
所以答案是:
【考點(diǎn)精析】關(guān)于本題考查的數(shù)列的前n項(xiàng)和,需要了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,相關(guān)部門隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如表統(tǒng)計(jì)數(shù)據(jù)表:

收入x(萬(wàn)元)

8.2

8.6

10.0

11.3

11.9

支出y(萬(wàn)元)

6.2

7.5

8.0

8.5

9.8


(1)根據(jù)上表可得回歸直線方程 = x+ ,其中 =0.76, = ,據(jù)此估計(jì),該社區(qū)一戶年收入為15萬(wàn)元的家庭年支出為多少?
(2)若從這5個(gè)家庭中隨機(jī)抽選2個(gè)家庭進(jìn)行訪談,求抽到家庭的年收入恰好一個(gè)不超過(guò)10萬(wàn)元,另一個(gè)超過(guò)11萬(wàn)元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(cos ,sin ), =(cos ,﹣sin ),且x∈[ ,π].
(1)求 及| + |;
(2)求函數(shù)f(x)= +| + |的最大值,并求使函數(shù)取得最大值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列{an}滿足a3=5,a10=﹣9.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求Sn的最大值及其相應(yīng)的n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別是a、b、c,且a+b+c=8. (Ⅰ)若a=2,b= ,求cosC的值;
(Ⅱ)若sinAcos2 +sinBcos2 =2sinC,且△ABC的面積S= sinC,求a和b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C 上,過(guò)M作x軸的垂線,垂足為N,點(diǎn)P滿足

(1) 求點(diǎn)P的軌跡方程;

(2)設(shè)點(diǎn) 在直線x=-3上,且.證明過(guò)點(diǎn)P且垂直于OQ的直線l過(guò)C的左焦點(diǎn)F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中有質(zhì)地、大小完全相同的5個(gè)小球,編號(hào)分別為1,2,3,4,5,甲、乙兩人玩一種游戲.甲先摸出一個(gè)球.記下編號(hào),放回后再摸出一個(gè)球,記下編號(hào),如果兩個(gè)編號(hào)之和為偶數(shù).則算甲贏,否則算乙贏.
(1)求甲贏且編號(hào)之和為6的事件發(fā)生的概率:
(2)試問(wèn):這種游戲規(guī)則公平嗎.請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線y=a分別與曲線y=2(x+1),y=x+lnx交于A、B,則|AB|的最小值為( )
A.3
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}滿足a1=a,an+1=can+1﹣c(n∈N*),其中a,c為實(shí)數(shù),且c≠0. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè) ,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案