已知函數(shù)f (x)=x3+(1-a)x2-3ax+1,a>0.
(Ⅰ) 證明:對(duì)于正數(shù)a,存在正數(shù)p,使得當(dāng)x∈[0,p]時(shí),有-1≤f (x)≤1;
(Ⅱ) 設(shè)(Ⅰ)中的p的最大值為g(a),求g(a)的最大值.
(Ⅰ)先利用導(dǎo)數(shù)求出單調(diào)區(qū)間,再分情況證明;
(Ⅱ)
解析試題分析:
(Ⅰ) 由于f ′(x)=3x2+3(1-a)x-3a=3(x+1)(x-a),且a>0,
故f (x)在[0,a]上單調(diào)遞減,在[a,+∞)上單調(diào)遞增.
又f (0)=1,f (a)=-a3-a2+1=(1-a)(a+2) 2-1.
當(dāng)f (a)≥-1時(shí),取p=a.
此時(shí),當(dāng)x∈[0,p]時(shí)有-1≤f (x)≤1成立.
當(dāng)f (a)<-1時(shí),由于f (0)+1=2>0,f (a)+1<0,
故存在p∈(0,a)使得f (p)+1=0.
此時(shí),當(dāng)x∈[0,p]時(shí)有-1≤f (x)≤1成立.
綜上,對(duì)于正數(shù)a,存在正數(shù)p,使得當(dāng)x∈[0,p]時(shí),有-1≤f (x)≤1. 7分
(Ⅱ) 由(Ⅰ)知f (x)在[0,+∞)上的最小值為f (a).
當(dāng)0<a≤1時(shí),f (a)≥-1,則g(a)是方程f (p)=1滿足p>a的實(shí)根,
即2p2+3(1-a)p-6a=0滿足p>a的實(shí)根,所以
g(a)=.
又g(a)在(0,1]上單調(diào)遞增,故g(a)max=g(1)=.
當(dāng)a>1時(shí),f (a)<-1.
由于f (0)=1,f (1)=(1-a)-1<-1,故[0,p]Ì [0,1].
此時(shí),g(a)≤1.
綜上所述,g(a)的最大值為. 15分
考點(diǎn):本題主要考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì)等基礎(chǔ)知識(shí),同時(shí)考查推理論證能力,分類討論等綜合解題能力和創(chuàng)新意識(shí)。
點(diǎn)評(píng):研究函數(shù)的性質(zhì)往往離不開(kāi)導(dǎo)數(shù),導(dǎo)數(shù)是研究函數(shù)性質(zhì)的有力工具,要靈活運(yùn)用;另外,函數(shù)如果含參數(shù),一般離不開(kāi)分類討論,分類討論時(shí)要做到不重不漏.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在原點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),討論函數(shù)在區(qū)間上的單調(diào)性;
(Ⅲ)證明不等式對(duì)任意成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知.
(1)若a=0時(shí),求函數(shù)在點(diǎn)(1,)處的切線方程;
(2)若函數(shù)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(3)令是否存在實(shí)數(shù)a,當(dāng)是自然對(duì)數(shù)的底)時(shí),函數(shù) 的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=(m為常數(shù)0<m<1),且數(shù)列{f()}是首項(xiàng)為2,公差為2的等差數(shù)列.
(1)=f(),當(dāng)m=時(shí),求數(shù)列{}的前n項(xiàng)和;
(2)設(shè)=·,如果{}中的每一項(xiàng)恒小于它后面的項(xiàng),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),(其中).
(Ⅰ)求函數(shù)的極值;
(Ⅱ)若函數(shù)在區(qū)間內(nèi)有兩個(gè)零點(diǎn),求正實(shí)數(shù)a的取值范圍;(Ⅲ)求證:當(dāng)時(shí),.(說(shuō)明:e是自然對(duì)數(shù)的底數(shù),e=2.71828…)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)表示導(dǎo)函數(shù)。
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)當(dāng)為奇數(shù)時(shí),設(shè),數(shù)列的前項(xiàng)和為,證明不等式對(duì)一切正整數(shù)均成立,并比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的極值;
(Ⅱ)當(dāng)時(shí),討論函數(shù)的單調(diào)性.
(Ⅲ)若對(duì)任意及任意,恒有 成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com