【題目】已知實(shí)數(shù),設(shè)函數(shù)

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)對(duì)任意均有的取值范圍.

注:為自然對(duì)數(shù)的底數(shù).

【答案】(1)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;(2.

【解析】

(1)首先求得導(dǎo)函數(shù)的解析式,然后結(jié)合函數(shù)的解析式確定函數(shù)的單調(diào)區(qū)間即可.

(2)由題意首先由函數(shù)在特殊點(diǎn)的函數(shù)值得到a的取值范圍,然后證明所得的范圍滿足題意即可.

(1)當(dāng)時(shí),,函數(shù)的定義域?yàn)?/span>,且:

,

因此函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.

(2)構(gòu)造函數(shù)

注意到:,

注意到時(shí)恒成立,滿足;

當(dāng)時(shí),,不合題意,

,解得:,故.

下面證明剛好是滿足題意的實(shí)數(shù)a的取值范圍.

分類討論:

(a)當(dāng)時(shí),,

,則:

,

易知,則函數(shù)單調(diào)遞減,,滿足題意.

(b)當(dāng)時(shí),等價(jià)于

左側(cè)是關(guān)于a的開(kāi)口向下的二次函數(shù),

其判別式,

,注意到當(dāng)時(shí),,

于是上單調(diào)遞增,,

于是當(dāng)時(shí)命題成立,

而當(dāng)時(shí),此時(shí)的對(duì)稱軸為隨著遞增,

于是對(duì)稱軸在的右側(cè),成立,(不等式等價(jià)于).

因此.

綜上可得:實(shí)數(shù)a的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】武漢又稱江城,是湖北省省會(huì)城市,被譽(yù)為中部地區(qū)中心城市,它不僅有著深厚的歷史積淀與豐富的民俗文化,更有著眾多名勝古跡與旅游景點(diǎn),每年來(lái)武漢參觀旅游的人數(shù)不勝數(shù),其中黃鶴樓與東湖被稱為兩張名片為合理配置旅游資源,現(xiàn)對(duì)已游覽黃鶴樓景點(diǎn)的游客進(jìn)行隨機(jī)問(wèn)卷調(diào)查,若不游玩東湖記1分,若繼續(xù)游玩東湖記2分,每位游客選擇是否游覽東湖景點(diǎn)的概率均為,游客之間選擇意愿相互獨(dú)立.

1)從游客中隨機(jī)抽取3人,記總得分為隨機(jī)變量,求的分布列與數(shù)學(xué)期望;

2)(i)若從游客中隨機(jī)抽取人,記總分恰為分的概率為,求數(shù)列的前10項(xiàng)和;

)在對(duì)所有游客進(jìn)行隨機(jī)問(wèn)卷調(diào)查過(guò)程中,記已調(diào)查過(guò)的累計(jì)得分恰為分的概率為,探討之間的關(guān)系,并求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】年以來(lái)精準(zhǔn)扶貧政策的落實(shí),使我國(guó)扶貧工作有了新進(jìn)展,貧困發(fā)生率由年底的下降到年底的,創(chuàng)造了人類減貧史上的的中國(guó)奇跡.“貧困發(fā)生率”是指低于貧困線的人口占全體人口的比例,年至年我國(guó)貧困發(fā)生率的數(shù)據(jù)如下表:

年份

2012

2013

2014

2015

2016

2017

2018

貧困發(fā)生率

10.2

8.5

7.2

5.7

4.5

3.1

1.4

(1)從表中所給的個(gè)貧困發(fā)生率數(shù)據(jù)中任選兩個(gè),求兩個(gè)都低于的概率;

(2)設(shè)年份代碼,利用線性回歸方程,分析年至年貧困發(fā)生率與年份代碼的相關(guān)情況,并預(yù)測(cè)年貧困發(fā)生率.

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:

(的值保留到小數(shù)點(diǎn)后三位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題;命題函數(shù)在區(qū)間上有零點(diǎn).

1)當(dāng)時(shí),若為真命題,求實(shí)數(shù)的取值范圍;

2)若命題是命題的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人承攬一項(xiàng)業(yè)務(wù),需做文字標(biāo)牌4個(gè),繪畫(huà)標(biāo)牌5個(gè),現(xiàn)有兩種規(guī)格的原料,甲種規(guī)格每張3m2,可做文字標(biāo)牌1個(gè),繪畫(huà)標(biāo)牌2個(gè),乙種規(guī)格每張2m2,可做文字標(biāo)牌2個(gè),繪畫(huà)標(biāo)牌1個(gè),求兩種規(guī)格的原料各用多少?gòu),才能使總的用料面積最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某“雙一流”大學(xué)專業(yè)獎(jiǎng)學(xué)金是以所學(xué)專業(yè)各科考試成績(jī)作為評(píng)選依據(jù),分為專業(yè)一等獎(jiǎng)學(xué)金、專業(yè)二等獎(jiǎng)學(xué)金及專業(yè)三等獎(jiǎng)學(xué)金,且專業(yè)獎(jiǎng)學(xué)金每個(gè)學(xué)生一年最多只能獲得一次.圖(1)是統(tǒng)計(jì)了該校名學(xué)生周課外平均學(xué)習(xí)時(shí)間頻率分布直方圖,圖(2)是這名學(xué)生在年周課外平均學(xué)習(xí)時(shí)間段獲得專業(yè)獎(jiǎng)學(xué)金的頻率柱狀圖.

(Ⅰ)求這名學(xué)生中獲得專業(yè)三等獎(jiǎng)學(xué)金的人數(shù);

(Ⅱ)若周課外平均學(xué)習(xí)時(shí)間超過(guò)小時(shí)稱為“努力型”學(xué)生,否則稱為“非努力型”學(xué)生,列聯(lián)表并判斷是否有的把握認(rèn)為該校學(xué)生獲得專業(yè)一、二等獎(jiǎng)學(xué)金與是否是“努力型”學(xué)生有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,側(cè)面為菱形,的中點(diǎn),為等腰直角三角形,,,且.

(1)證明:平面.

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 在點(diǎn)處的切線與直線平行,且函數(shù)有兩個(gè)零點(diǎn).

(1)求實(shí)數(shù)的值和實(shí)數(shù)的取值范圍;

(2)記函數(shù)的兩個(gè)零點(diǎn)為,求證: 其中為自然對(duì)數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)P到兩定點(diǎn)M(﹣3,0),N3,0)的距離滿足|PM|2|PN|.

1)求證:點(diǎn)P的軌跡為圓;

2)記(1)中軌跡為⊙C,過(guò)定點(diǎn)(0,1)的直線l與⊙C交于A,B兩點(diǎn),求△ABC面積的最大值,并求此時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案