【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點,是棱上的點,,,.
(1)求證:平面平面;
(2)若為棱的中點,求異面直線與所成角的余弦值;
(3)若二面角大小為,求的長.
【答案】(1)詳見解析;(2);(3).
【解析】
試題(1)根據面面垂直的性質定理得到平面,又因為,所以平面,而平面,所以面面垂直;
(2)根據圖像以Q為原點建立空間直角坐標系,分別為軸,將異面直線所成角轉化為;
(3)根據點C,M,P三點共線,設的坐標,然后求兩個平面的法向量,解得,最后代入模的公式.
試題解析:(1)證明:∵ADBC,,Q為AD的中點,
∴四邊形BCDQ為平行四邊形, ∴CDBQ.
∵∠ADC, ∴∠AQB,即QB⊥AD.
又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴BQ⊥平面PAD.
∵BQ平面PQB, ∴平面PQB⊥平面PAD.
(2)解:∵PA=PD,Q為AD的中點, ∴PQ⊥AD.
∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴PQ⊥平面ABCD.
如圖2,以Q為原點建立空間直角坐標系,則,,,,,∵M是PC的中點,∴,
∴.
設異面直線AP與BM所成角為,
則=
∴異面直線AP與BM所成角的余弦值為.
(3)解:由(Ⅱ)知平面BQC的法向量為,
由C、M、P三點共線得,且, 從而有,
又,設平面MBQ法向量為,
由可取.
∵二面角MBQC為30°,∴,∴,∴.
科目:高中數學 來源: 題型:
【題目】在一棟6層樓房里,每個房間的門牌號均為三位數,首位代表樓層號,后兩位代表房間號,如218表示的是第2層第18號房間,現(xiàn)已知有寶箱藏在如下圖18個房間里的某一間,其中甲同學只知道樓層號,乙同學只知道房間號,不知道樓層號,現(xiàn)有以下甲乙兩人的一段對話:
甲同學說:我不知道,你肯定也不知道;
乙同學說:本來我也不知道,但是現(xiàn)在我知道了;
甲同學說:我也知道了.
根據上述對話,假設甲乙都能做出正確的推斷,則藏有寶箱的房間的門牌號是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖已知橢圓,是長軸的一個端點,弦過橢圓的中心,且,.
(Ⅰ)求橢圓的方程:
(Ⅱ)設為橢圓上異于且不重合的兩點,且的平分線總是垂直于軸,是否存在實數,使得,若存在,請求出的最大值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐S-ABC中,SA ⊥底面ABC,AC=AB=SA=2,AC ⊥AB,D,E分別是AC,BC的中點,F在SE上,且SF=2FE.
(Ⅰ)求異面直線AF與DE所成角的余弦值;
(Ⅱ)求證:AF⊥平面SBC;
(Ⅲ)設G為線段DE的中點,求直線AG與平面SBC所成角的余弦值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直線不與坐標軸垂直,且與拋物線有且只有一個公共點.
(1)當點的坐標為時,求直線的方程;
(2)設直線與軸的交點為,過點且與直線垂直的直線交拋物線于,兩點.當時,求點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】利用一半徑為4cm的圓形紙片(圓心為O)制作一個正四棱錐.方法如下:
(1)以O為圓心制作一個小的圓;
(2)在小的圓內制作一內接正方形ABCD;
(3)以正方形ABCD的各邊向外作等腰三角形,使等腰三角形的頂點落在大圓上(如圖);
(4)將正方形ABCD作為正四棱錐的底,四個等腰三角形作為正四棱錐的側面折起,使四個等腰三角形的頂點重合,問:要使所制作的正四棱錐體積最大,則小圓的半徑為
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的方程為,離心率,且短軸長為4.
求橢圓的方程;
已知,,若直線l與圓相切,且交橢圓E于C、D兩點,記的面積為,記的面積為,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com