【題目】函數(shù)y=cos(2x+φ)(﹣π≤φ<π)的圖象向右平移 個單位后,與函數(shù) 的圖象重合,則φ的值為( )
A.
B.-
C.
D.-
【答案】A
【解析】解:∵f(x)=cos(2x+φ)=sin[ +(2x+φ)]=sin(2x+ +φ),
∴f(x﹣ )=sin[2(x﹣ )+ +φ)]=sin(2x﹣ +φ),
又f(x﹣ )=sin(2x+ ),
∴sin(2x﹣ +φ)=sin(2x+ ),
∴φ﹣ =2kπ+ ,
∴φ=2kπ+ ,又﹣π≤φ<π,
∴φ= .
故選:A.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識可以得到問題的答案,需要掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若x=3是函數(shù)f(x)=(x2+ax+1)ex的極值點,則f(x)的極大值為( )
A. ﹣2e B. -2 C. 22 D. 6e﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,,是的動點,過點作的垂線,線段的中垂線交于點,的軌跡為.
(1)求軌跡的方程;
(2)過且與坐標軸不垂直的直線交曲線于兩點,若以線段為直徑的圓與直線相切,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m, n是兩條不同的直線,是三個不同的平面, 給出下列四個命題:
①若m⊥α,n∥α,則m⊥n;; ②若α∥β, β∥r, m⊥α,則m⊥r;
③若m∥α,n∥α,則m∥n;; ④若α⊥r, β⊥r,則α∥β.
其中正確命題的序號是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正三棱柱的所有棱長都相等,分別為的中點.現(xiàn)有下列四個結(jié)論:
:; :;
:平面; :異面直線與所成角的余弦值為.
其中正確的結(jié)論是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是雙曲線 的兩個焦點,P是C上一點,若,且的最小內(nèi)角為,則C的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,焦距為.斜率為k的直線l與橢圓M有兩個不同的交點A,B.
(Ⅰ)求橢圓M的方程;
(Ⅱ)若,求 的最大值;
(Ⅲ)設(shè),直線PA與橢圓M的另一個交點為C,直線PB與橢圓M的另一個交點為D.若C,D和點 共線,求k.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.命題“x∈R,ex>0”的否定是“x∈R,ex>0”
B.命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題
C.“x2+2x≥ax在x∈[1,2]上恒成立”“(x2+2x)min≥(ax)max在x∈[1,2]上恒成立”
D.命題“若a=﹣1,則函數(shù)f(x)=ax2+2x﹣1只有一個零點”的逆命題為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過點,圓:.
(1)當(dāng)直線與圓相切時,求直線的一般方程;
(2)若直線與圓相交,且弦長為,求直線的一般方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com