已知點,,若直線與線段的交點滿足,且,則實數(shù)的取值范圍為(  )

A.            B. 

C. D. 

 

【答案】

B

【解析】若直線與線段有交點,則據(jù)圖得直線與直線AC重合時符合臨界條件,此時斜率,又,所以P點距A較近,最遠距離為,此時斜率是C與AB中點D()的連線的斜率故實數(shù)的取值范圍。

 


 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知動圓過定點A(4,0),且在y軸上截得的弦MN的長為8.
(1)求動圓圓心的軌跡C的方程;
(2)若軌跡C與圓M:(x-5)2+y2=r2(r>0)相交于A、B、C、D四個點,求r的取值范圍;
(3)已知點B(-1,0),設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點P,Q,若x軸是∠PBQ的角平分線,證明直線l過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一條雙曲線
x2
4
-y2=1
的左、右頂點分別為A1,A2,點M(x1,y1),N(x1,-y1)是雙曲線上不同的兩個動點.
(1)求直線A1M與A2N交點的軌跡E的方程式;
(2)設(shè)直線l與曲線E相交于不同的兩點A,B,已知點A的坐標為(-2,0),若點Q(0,y0)在線段AB的垂直平分線上,且
QA
QB
=4
.求y0的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鹽城一模)如圖,在平面直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點M(3
2
,
2
),橢圓的離心率e=
2
2
3
,F(xiàn)1、F2分別是橢圓的左、右焦點.
(1)求橢圓C的方程;
(2)過點M作兩直線與橢圓C分別交于相異兩點A、B.
①若直線MA過坐標原點O,試求△MAF2外接圓的方程;
②若∠AMB的平分線與y軸平行,試探究直線AB的斜率是否為定值?若是,請給予證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•陜西)已知動圓過定點A(4,0),且在y軸上截得的弦MN的長為8.
(Ⅰ) 求動圓圓心的軌跡C的方程;
(Ⅱ) 已知點B(-1,0),設(shè)不垂直于x軸的直線與軌跡C交于不同的兩點P,Q,若x軸是∠PBQ的角平分線,證明直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,已知點A(1,0),點B在直線l:x=-1上運動,過點B與l垂直的直線和線段AB的垂直平分線相交于點M.
(1)求動點M的軌跡E的方程;
(2)過(1)中的軌跡E上的定點P(x0,y0)(y0>0)作兩條直線分別與軌跡E相交于C(x1,y1),D(x2,y2)兩點.試探究:當直線PC,PD的斜率存在且傾斜角互補時,直線CD的斜率是否為定值?若是,求出這個定值;若不是,說明理由.

查看答案和解析>>

同步練習冊答案