【題目】從某食品廠生產(chǎn)的面包中抽取個,測量這些面包的一項質(zhì)量指標(biāo)值,由測量結(jié)果得如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組 | |||||
頻數(shù) |
(1)在相應(yīng)位置上作出這些數(shù)據(jù)的頻率分布直方圖;
(2)估計這種面包質(zhì)量指標(biāo)值的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該食品廠生產(chǎn)的這種面包符合“質(zhì)量指標(biāo)值不低于的面包至少要占全部面包的規(guī)定?”
【答案】(1)見解析;(2);(3)見解析.
【解析】試題分析:(1)根據(jù)題設(shè)中的數(shù)據(jù),即可畫出頻率分布直方圖;
(2)利用平均數(shù)的計算公式,即可求得平均數(shù);
(3)計算得質(zhì)量指標(biāo)值不低于的面包所占比例的估計值,即可作出判斷.
試題解析:
(1)畫圖.
(2)質(zhì)量指標(biāo)值的樣本平均數(shù)為
.
所以這種面包質(zhì)量指標(biāo)值的平均數(shù)的估計值為.
(3)質(zhì)量指標(biāo)值不低于的面包所占比例的估計值為
,
由于該估計值大于,故可以認(rèn)為該食品廠生產(chǎn)的這種面包符合“質(zhì)量指標(biāo)值不低于的面包至少要占全部面包的規(guī)定.”
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,平面底面,且在底面正投影點在線段上,,.
(1)證明:;
(2)若,與所成角的余弦值為,求鈍二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線:,點.
(1)求點關(guān)于直線的對稱點的坐標(biāo);
(2)直線關(guān)于點對稱的直線的方程;
(3)以為圓心,3為半徑長作圓,直線過點,且被圓截得的弦長為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幼兒園雛鷹班的生活老師統(tǒng)計2018年上半年每個月的20日的晝夜溫差,和患感冒的小朋友人數(shù)(/人)的數(shù)據(jù)如下:
溫差 | ||||||
患感冒人數(shù) | 8 | 11 | 14 | 20 | 23 | 26 |
其中,,.
(Ⅰ)請用相關(guān)系數(shù)加以說明是否可用線性回歸模型擬合與的關(guān)系;
(Ⅱ)建立關(guān)于的回歸方程(精確到),預(yù)測當(dāng)晝夜溫差升高時患感冒的小朋友的人數(shù)會有什么變化?(人數(shù)精確到整數(shù))
參考數(shù)據(jù):.參考公式:相關(guān)系數(shù):,回歸直線方程是, ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的廣告費用支出與銷售額之間有如下的對應(yīng)數(shù)據(jù):
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)畫出散點圖;
(2)求回歸直線方程;
(3)據(jù)此估計廣告費用為10時,銷售收入的值.
參考公式及數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)在同一個周期內(nèi),當(dāng)時y取最大值1,當(dāng)時,y取最小值﹣1.
(1)求函數(shù)的解析式y=f(x);
(2)函數(shù)y=sinx的圖象經(jīng)過怎樣的變換可得到y=f(x)的圖象?
(3)若函數(shù)f(x)滿足方程f(x)=a(0<a<1),求在[0,2π]內(nèi)的所有實數(shù)根之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究機構(gòu)對高三學(xué)生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數(shù)據(jù):
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
(1)請在圖中畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測記憶力為9的同學(xué)的判斷力.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點,焦點在x軸上,以兩個焦點和短軸的兩個端點為頂點的四邊形是一個面積為8的正方形(記為Q).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點P是直線x=﹣4與x軸的交點,過點P的直線l與橢圓C相交于M,N兩點,當(dāng)線段MN的中點落在正方形Q內(nèi)(包括邊界)時,求直線l斜率的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com