已知函數(shù)f(x)=-1(x≥1)的圖象是,曲線(xiàn)關(guān)于直線(xiàn)y=x對(duì)稱(chēng).

(1)求曲線(xiàn)的方程y=g(x);

(2)設(shè)函數(shù)y=g(x)的定義域?yàn)镸,∈M,且,求證:|g()-g()|<||;

(3)設(shè)A,B是曲線(xiàn)上任意不同兩點(diǎn),證明直線(xiàn)AB與直線(xiàn)y=x必相交.

答案:
解析:

  解 (1)∵曲線(xiàn)關(guān)于直線(xiàn)y=x對(duì)稱(chēng),

  ∴y=g(x)是y=f(x)的反函數(shù),由y=-1,得=y(tǒng)+1,而由x≥1,知y≥0,從而x=(y≥0),∴曲線(xiàn)的方程是g(x)=(x≥0).

  證 (2)由(1)知M={x|x≥0},設(shè)∈M,且.則有≠0,

  故

  證 (3)設(shè)A(),B()是曲線(xiàn)上任意不同兩點(diǎn),∈M,且,由(2)知<1,∴直線(xiàn)AB的斜率≠1,又∵直線(xiàn)y=x的斜率為1,∴直線(xiàn)AB與直線(xiàn)y=x必相交.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011屆南京市金陵中學(xué)高三第四次模擬考試數(shù)學(xué)試題 題型:解答題

(本小題滿(mǎn)分16分)已知函數(shù)f(x)=ax2-(2a+1)x+2lnx(a為正數(shù)).
(1) 若曲線(xiàn)y=f(x)在x=1和x=3處的切線(xiàn)互相平行,求a的值;
(2) 求f(x)的單調(diào)區(qū)間;
(3) 設(shè)g(x)=x2-2x,若對(duì)任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州市高三上學(xué)期開(kāi)學(xué)考試數(shù)學(xué)卷 題型:選擇題

已知函數(shù)f(x)=4x2mx+5在區(qū)間[-2,+∞)上是增函數(shù),則f(1)的范圍是(  )

A.f(1)≥25         B.f(1)=25     C.f(1)≤25         D.f(1)>25

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省高三第三次月考文科數(shù)學(xué)卷 題型:選擇題

已知函數(shù)f(x)=若f(a)=,則a=                 (  )

A.-1                      B.

C.-1或                 D.1或-

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省天門(mén)市高三天5月模擬文科數(shù)學(xué)試題 題型:填空題

  已知函數(shù)f(x)=ax2+bx+c(a≠0),且f(x)=x無(wú)實(shí)根,下列命題中:

    (1)方程f [f (x)]=x一定無(wú)實(shí)根;

    (2)若a>0,則不等式f [f (x)]>x對(duì)一切實(shí)數(shù)x都成立;

    (3)若a<0,則必存在實(shí)數(shù)x0,使f [f (x0)]>x0;

    (4)若a+b+c=0,則不等式f [f (x)]<x對(duì)一切x都成立;

    正確的序號(hào)有          .              

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆江西省南昌市高三第一次模擬測(cè)試卷理科數(shù)學(xué)試卷 題型:選擇題

已知函數(shù)f(x)=|lg(x-1)|-()x有兩個(gè)零點(diǎn)x1x2,則有

A.x1x2<1    B.x1x2<x1x2

C.x1x2x1x2    D.x1x2>x1x2

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案