(本小題12分)如圖:四棱錐P—ABCD中,底面ABCD

是矩形,PA⊥底面ABCD,PA=AB=1,AD=,點F是PB的中點,點E在邊BC上移動.
(1)證明:無論點E在BC邊的何處,都有PE⊥AF;
(2)當(dāng)BE等于何值時,PA與平面PDE所成角的大小為45°. 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,點D是BC的中點.

(1)求異面直線A1B與C1D所成角的余弦值;
(2)求平面ADC1與平面ABA1所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形ABCD為矩形,PD⊥平面ABCD,PDQA,QAADPD.

(1)求證:平面PQC⊥平面DCQ;
(2)若二面角Q-BP-C的余弦值為-,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

正三棱柱的所有棱長都為4,D為的中點.

(1)求證:⊥平面
(2)求二面角余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,四棱錐SABCD的底面是正方形,每條側(cè)棱的長都是底面邊長的倍,P為側(cè)棱SD上的點.

(1)求證:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PACD的大小;
(3)在(2)的條件下,側(cè)棱SC上是否存在一點E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,平面平面是等腰直角三角形,,四邊形是直角梯形,,,,點分別為、的中點.

(1)求證:平面;
(2)求直線和平面所成角的正弦值;
(3)能否在上找到一點,使得平面?若能,請指出點的位置,并加以證明;若不能,請說明理由 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

四棱錐中,底面為平行四邊形,側(cè)面,已知
(Ⅰ)求證:;
(Ⅱ)在SB上選取點P,使SD//平面PAC ,并證明;
(Ⅲ)求直線與面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,三棱錐P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。

(I)求棱PB的長;
(II)求二面角P—AB—C的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分15分) 如圖,在三棱錐中,,點分別是的中點,底面
(1)求證:平面;
(2)當(dāng)時,求直線與平面所成角的正弦值;
(3)當(dāng)為何值時,在平面內(nèi)的射影恰好為的重心.

查看答案和解析>>

同步練習(xí)冊答案