【題目】已知極坐標(biāo)系的極點在平面直角坐標(biāo)系的原點處,極軸與軸的非負半軸重合,且長度單位相同,直線的極坐標(biāo)方程為,曲線(為參數(shù)).其中.
(1)試寫出直線的直角坐標(biāo)方程及曲線的普通方程;
(2)若點為曲線上的動點,求點到直線距離的最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為, , 分別為橢圓的上頂點和右焦點, 的面積為,直線與橢圓交于另一個點,線段的中點為.
(1)求直線的斜率;
(2)設(shè)平行于的直線與橢圓交于不同的兩點, ,且與直線交于點,求證:存在常數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行了一次“環(huán)保知識競賽”活動. 為了了解本次競賽學(xué)生成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為)進行統(tǒng)計. 按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(1)求樣本容量和頻率分布直方圖中的,的值;
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機抽取3名同學(xué)到市政廣場參加環(huán)保知識宣傳的志愿者活動,設(shè)表示所抽取的3名同學(xué)中得分在[80,90)的學(xué)生人數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為提高黔東南州的整體旅游服務(wù)質(zhì)量,州旅游局舉辦了黔東南州旅游知識競賽,參賽單位為本州內(nèi)各旅游協(xié)會,參賽選手為持證導(dǎo)游.現(xiàn)有來自甲旅游協(xié)會的導(dǎo)游3名,其中高級導(dǎo)游2名;乙旅游協(xié)會的導(dǎo)游5名,其中高級導(dǎo)游3名.從這8名導(dǎo)游中隨機選擇4人 參加比賽.
(Ⅰ)設(shè)為事件“選出的4人中恰有2名高級導(dǎo)游,且這2名高級導(dǎo)游來自同一個旅游協(xié)會”,求事件發(fā)生的概率.
(Ⅱ)設(shè)為選出的4人中高級導(dǎo)游的人數(shù),求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2018·石家莊一檢]已知函數(shù).
(1)若,求函數(shù)的圖像在點處的切線方程;
(2)若函數(shù)有兩個極值點,,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)求證:“”是“函數(shù)有且只有一個零點” 的充分必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系.
(1)在極坐標(biāo)系下,設(shè)曲線與射線和射線分別交于,兩點,求的面積;
(2)在直角坐標(biāo)系下,直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的極值;
(2)若存在與函數(shù)的圖象都相切的直線,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com