如圖所示,AB是⊙O的直徑,過圓上一點E作切線ED⊥AF,交AF的延長線于點D,交AB的延長線于點C.若CB=2,CE=4,則⊙O 的半徑長為________;AD的長為________.

3    
分析:設(shè)出圓的半徑直接利用切割線定理求出圓的半徑,通過三角形相似列出比例關(guān)系求出AD即可.
解答:解:設(shè)r是⊙O的半徑.由切割線定理可知:CE2=CA•CB,
即42=(2r+2)×2,解得r=3.
因為EC是圓的切線,所以O(shè)E⊥EC,AD⊥DC,
所以△ADC∽△OEC,所以,
,解得
故答案為:3;
點評:本題考查圓的切割線定理的應(yīng)用,三角形相似的證明以及應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,AB是⊙O直徑,OD⊥弦BC于點F,且交⊙O于點E,若∠AEC=∠ODB.
(1)判斷直線BD和⊙O的位置關(guān)系,并給出證明;
(2)當(dāng)AB=10,BC=8時,求BD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,AB是⊙O的直徑,點C是⊙O圓周上不同于A、B的任意一點,PA⊥平面ABC,點E是線段PB的中點,點M在
AB
上,且MO∥AC.
(1)求證:BC⊥平面PAC;
(2)求證:平面EOM∥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,AB是⊙O的直徑,PA⊥平面⊙O,C為圓周上一點,AB=5cm,AC=2cm,則B到平面PAC的距離為
21
cm
21
cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞二模)(幾何證明選講選做題)
如圖所示,AB是⊙O的直徑,過圓上一點E作切線ED⊥AF,交AF的延長線于點D,交AB的延長線于點C.若CB=2,CE=4,則AD的長為
24
5
24
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•揭陽一模)如圖所示,AB是⊙O的直徑,過圓上一點E作切線ED⊥AF,交AF的延長線于點D,交AB的延長線于點C.若CB=2,CE=4,則⊙O 的半徑長為
3
3
;AD的長為
24
5
24
5

查看答案和解析>>

同步練習(xí)冊答案