12.已知向量$\overrightarrow{a}$=(-1,-3),$\overrightarrow$=(2,t),且$\overrightarrow{a}∥\overrightarrow$,則$\overrightarrow{a}-\overrightarrow$=(-3,-9).

分析 根據(jù)題意,由$\overrightarrow{a}∥\overrightarrow$,可得(-1)×t=2×(-3),解可得t的值,即可得$\overrightarrow$的坐標,進而由向量減法的坐標公式計算可得答案.

解答 解:根據(jù)題意,向量$\overrightarrow{a}$=(-1,-3),$\overrightarrow$=(2,t),
若$\overrightarrow{a}∥\overrightarrow$,則有(-1)×t=2×(-3),
解可得t=6,
則$\overrightarrow$=(2,6),
則$\overrightarrow{a}-\overrightarrow$=(-3,-9);
故答案為:(-3,-9).

點評 本題考查向量平行的坐標表示,關(guān)鍵是由向量平行的坐標表示公式求出t的值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.某教育機構(gòu)為了解本地區(qū)高三學生上網(wǎng)的情況,隨機抽取了100名學生進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學生每天上網(wǎng)時間的頻率分布直方圖:將每天上網(wǎng)時間不低于40分鐘的學生稱為“上網(wǎng)迷”.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認為“上網(wǎng)迷“與性別有關(guān)?
非上網(wǎng)迷上網(wǎng)迷合計
1055
合計
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量高三學生中,采用隨機抽樣方法每次抽取1名學生,抽取3次,記被抽取的3名學生中的“上網(wǎng)迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨立的,求X=2的概率.
附:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{({n}_{11}+{n}_{12})({n}_{21}+{n}_{22})({n}_{11}+{n}_{21})({n}_{12}+{n}_{22})}$,
P(X2≥k)0.050.01
k3.8416.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設(shè)數(shù)列{an}的前n項和為Sn,并且滿足2Sn=${a}_{n}^{2}$+n,an>0.
(1)求a1,a2,a3的值,并猜想an的通項公式;
(2)用數(shù)學歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.等差數(shù)列{an}的前n項和為${S_n}=\frac{{{n^2}+3n}}{2}$.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足${b_n}=\frac{1}{{{a_{2n-1}}{a_{2n+1}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.河南多地遭遇跨年霾,很多學校調(diào)整元旦放假時間,提前放假讓學生在家躲霾.鄭州市根據(jù)《鄭州市人民政府辦公廳關(guān)于將重污染天氣黃色預警升級為紅色預警的通知》,自12月29日12時將黃色預警升級為紅色預警,12月30日0時啟動Ⅰ級響應,明確要求“幼兒園、中小學等教育機構(gòu)停課,停課不停學”.學生和家長對這一舉措褒貶不一,有為了健康贊成的,有怕耽誤學習不贊成的,某調(diào)查機構(gòu)為了了解公眾對該舉措的態(tài)度,隨機調(diào)查采訪了50人,將調(diào)查情況匯總成表:
年齡(歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)510151055
贊成人數(shù)469634
(1)請補全被調(diào)查人員年齡的頻率分布直方圖;
(2)若從年齡在[55,65),[65,75]的被調(diào)查者中分別隨機選取一人進行追蹤調(diào)查,求這兩人都贊成“停課”這一舉措的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.(1)化簡:$\frac{{cos(θ+π)×{{sin}^2}(θ+3π)}}{{tan(θ+4π)×tan(π+θ)×{{cos}^3}(-π-θ)}}$
(2)求值:$\frac{{\sqrt{1-2sin{{10}°}cos{{10}°}}}}{{cos{{10}°}-\sqrt{1-{{cos}^2}{{170}°}}}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=x2-(2t+1)x+tlnx(t∈R)
(1)若t=1,求f(x)的極值;
(2)設(shè)函數(shù)g(x)=(1-t)x,若?x0∈[1,e],使得f(x0)≥g(x0)成立,求實數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)f(x)=(x2-1)3+2的極值點是( 。
A.x=1B.x=-1或x=1或x=0C.x=0D.x=-1或x=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.某同學動手做實驗:《用隨機模擬的方法估計圓周率的值》,在如圖的正方形中隨機撒豆子,每個豆子落在正方形內(nèi)任何一點是等可能的,若他隨機地撒500粒統(tǒng)計得到落在圓內(nèi)的豆子數(shù)為390粒,則由此估計出的圓周率π的值為3.12.(精確到0.01)

查看答案和解析>>

同步練習冊答案