集合M={(x,y)|xy≤0,x,y∈R}的意義是( 。
分析:根據(jù)xy≤0,可得xy<0或xy=0,分類討論,即可得到結(jié)論.
解答:解:∵xy≤0,∴xy<0或xy=0
當(dāng)xy<0時,則有
x<0
y>0
x>0
y<0
,點(x,y)在二、四象限,
當(dāng)xy=0時,則有x=0或y=0,點(x,y)在坐標(biāo)軸上,
故選D.
點評:本題考查集合的含義,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

集合M={1,x,y},N={x2,x,xy},若M=N,求x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={f(x)|y=f(x)},其元素f(x)須同時滿足下列三個條件:
①定義域為(-1,1);
②對于任意的x,y∈(-1,1),均有f(x)+f(y)=f(
x+y
1+xy
)
;
③當(dāng)x<0時,f(x)>0.
(Ⅰ)若函數(shù)f(x)∈M,證明:y=f(x)在定義域上為奇函數(shù);
(Ⅱ)若函數(shù)h(x)=ln
1-x
1+x
,判斷是否有h(x)∈M,說明理由;
(Ⅲ)若f(x)∈M且f(-
1
2
)=1
,求函數(shù)y=f(x)+
1
2
的所有零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用特征性質(zhì)描述法表示圖中陰影部分的點(含邊界上的點)組成的集合M是
{(x,y)|
-1≤x≤0
0≤y≤1
0≤x≤2
-1≤y≤0
}
{(x,y)|
-1≤x≤0
0≤y≤1
0≤x≤2
-1≤y≤0
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都七中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知集合M={f(x)|y=f(x)},其元素f(x)須同時滿足下列三個條件:
①定義域為(-1,1);
②對于任意的x,y∈(-1,1),均有;
③當(dāng)x<0時,f(x)>0.
(Ⅰ)若函數(shù)f(x)∈M,證明:y=f(x)在定義域上為奇函數(shù);
(Ⅱ)若函數(shù),判斷是否有h(x)∈M,說明理由;
(Ⅲ)若f(x)∈M且,求函數(shù)的所有零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都七中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知集合M={f(x)|y=f(x)},其元素f(x)須同時滿足下列三個條件:
①定義域為(-1,1);
②對于任意的x,y∈(-1,1),均有;
③當(dāng)x<0時,f(x)>0.
(Ⅰ)若函數(shù)f(x)∈M,證明:y=f(x)在定義域上為奇函數(shù);
(Ⅱ)若函數(shù),判斷是否有h(x)∈M,說明理由;
(Ⅲ)若f(x)∈M且,求函數(shù)的所有零點.

查看答案和解析>>

同步練習(xí)冊答案