【題目】在如圖所示的四棱錐中,四邊形為平行四邊形,為邊長為2的等邊三角形,,點(diǎn),分別為,的中點(diǎn),是異面直線的公垂線.

1)證明:平面平面;

2)記的重心為,求直線與平面所成角的正弦值.

【答案】1)詳見解析;(2

【解析】

1的中點(diǎn),利用等邊三角形的性質(zhì)可得,根據(jù)是異面直線的公垂線,可得.可得平面.進(jìn)而得出:平面平面

2)根據(jù),為中點(diǎn),可得,又是異面直線的公垂線,可得,可得:平面.建立如圖所示的空間直角坐標(biāo)系.設(shè)平面的一個(gè)法向量為,可得,由,,的坐標(biāo)可得的重心.設(shè)直線與平面所成角為,則

解:(1)證明:因?yàn)?/span>的中點(diǎn),所以在等邊中,

又因?yàn)?/span>是異面直線的公垂線,所以

又因?yàn)?/span>,平面,所以平面

因?yàn)?/span>平面,所以平面平面

2)因?yàn)?/span>、為中點(diǎn),所以,又因?yàn)?/span>是異面直線的公垂線,

所以,所以為等腰直角三角形

連接,

因?yàn)?/span>,平面,平面平面且平面平面

所以平面

因此,以為原點(diǎn),分別以、、所在的直線為、軸建系如圖所示:

,,,

因?yàn)樗倪呅?/span>為平行四邊形,設(shè)

因?yàn)?/span>,所以

所以

設(shè)面的一個(gè)法向量為

,則,,所以

因?yàn)?/span>,,

所以的重心為的坐標(biāo)為

設(shè)直線與平面所成角為,則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年,河南省鄭州市的房?jī)r(jià)依舊是鄭州市民關(guān)心的話題.總體來說,二手房房?jī)r(jià)有所下降,相比二手房而言,新房市場(chǎng)依然強(qiáng)勁,價(jià)格持續(xù)升高.已知銷售人員主要靠售房提成領(lǐng)取工資.現(xiàn)統(tǒng)計(jì)鄭州市某新房銷售人員一年的工資情況的結(jié)果如圖所示,若近幾年來該銷售人員每年的工資總體情況基本穩(wěn)定,則下列說法正確的是(

A.月工資增長率最高的為8月份

B.該銷售人員一年有6個(gè)月的工資超過4000

C.由此圖可以估計(jì),該銷售人員20206,7,8月的平均工資將會(huì)超過5000

D.該銷售人員這一年中的最低月工資為1900

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c,dR,矩陣A 的逆矩陣A1.若曲線C在矩陣A對(duì)應(yīng)的變換作用下得到直線y2x1,求曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古希臘數(shù)學(xué)家阿波羅尼奧斯發(fā)現(xiàn):平面上到兩定點(diǎn),距離之比為常數(shù)的點(diǎn)的軌跡是一個(gè)圓心在直線上的圓,該圓簡(jiǎn)稱為阿氏圓.根據(jù)以上信息,解決下面的問題:如圖,在長方體中,,點(diǎn)在棱上,,動(dòng)點(diǎn)滿足.若點(diǎn)在平面內(nèi)運(yùn)動(dòng),則點(diǎn)所形成的阿氏圓的半徑為________;若點(diǎn)在長方體內(nèi)部運(yùn)動(dòng),為棱的中點(diǎn),的中點(diǎn),則三棱錐的體積的最小值為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班主任利用周末時(shí)間對(duì)該班級(jí)年最后一次月考的語文作文分?jǐn)?shù)進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)分?jǐn)?shù)都位于之間,現(xiàn)將所有分?jǐn)?shù)情況分為、、、、、共七組,其頻率分布直方圖如圖所示,已知.

1)求頻率分布直方圖中、的值;

2)求該班級(jí)這次月考語文作文分?jǐn)?shù)的平均數(shù)和中位數(shù).(每組數(shù)據(jù)用該組區(qū)間中點(diǎn)值作為代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形為梯形,且ABDC,,平面平面

(Ⅰ)證明:平面平面

(Ⅱ)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求函數(shù)的圖象在點(diǎn)處的切線方程;

2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,分別為棱、的中點(diǎn),.

1)證明:平面平面;

2)若二面角的大小為45°,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,討論函數(shù)的單調(diào)性;

(Ⅱ)若對(duì)任意的,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案