已知圓C:x2+y2-2x-2y+1=0,直線l經(jīng)過點(diǎn)P(0,-2)
(1)當(dāng)直線l與圓相切時(shí),求此時(shí)直線l的方程;
(2)已知點(diǎn)M在圓C上運(yùn)動(dòng),求點(diǎn)M到直線l的距離的最大值,并求此時(shí)直線l的方程.
分析:(1)將圓C方程化為標(biāo)準(zhǔn)方程,找出圓心坐標(biāo)與半徑r,當(dāng)直線l斜率不存在時(shí),顯然x=0符合題意;當(dāng)直線l斜率存在時(shí),設(shè)為k,根據(jù)P坐標(biāo)與k寫出直線l方程,由直線與圓相切,圓心到切線的距離等于圓的半徑,利用點(diǎn)到直線的距離公式列出關(guān)于k的方程,求出方程的解得到k的值,確定出此時(shí)直線l方程,綜上,得到滿足題意直線l的方程;
(2)當(dāng)直線l⊥線段CP時(shí),圓心C到直線的距離即為CP的長(zhǎng),當(dāng)直線l不垂直線段CP時(shí),圓心到直線的距離d<|CP|,可得動(dòng)點(diǎn)M到直線的最大距離為|CP|+r,利用兩點(diǎn)間的距離公式求出|CP|的長(zhǎng),進(jìn)而確定出最大距離;再由直線CP與直線l垂直,得到斜率的乘積為-1,求出直線l的斜率,由斜率與P坐標(biāo)即可確定出直線l的方程.
解答:解:(1)圓的方程可整理成(x-1)2+(y-1)2=1,
∴圓心為C(1,1),半徑r=1,
分兩種情況考慮:
當(dāng)直線的斜率不存在,即直線垂直于x軸時(shí),直線與圓相切,符合題意,
此時(shí)直線方程為x=0;
當(dāng)直線的斜率存在時(shí),設(shè)直線方程為y=kx-2,
∵直線與圓相切,∴圓心到直線的距離d=r,即
|k-2-1|
k2+1
=1,
解得:k=
3
4
,直線方程為y=
3
4
x-2,
綜上,切線方程為x=0或y=
3
4
x-2;
(2)當(dāng)直線l⊥線段CP時(shí),圓心C到直線的距離即為CP的長(zhǎng),當(dāng)直線l不垂直線段CP時(shí),圓心到直線的距離d<|CP|,
∴動(dòng)點(diǎn)M到直線的最大距離為|CP|+r=
(1-0)2+(1+2)2
+1=
10
+1;
此時(shí)直線的斜率k滿足k•kCP=k•
-2-1
0-1
=-1,解得:k=-
1
3
,
∴M到直線的最大距離為
10
+1,直線方程為y=-
1
3
x-2.
點(diǎn)評(píng):此題考查了直線與圓的位置關(guān)系,涉及的知識(shí)有:圓的標(biāo)準(zhǔn)方程,點(diǎn)到直線的距離公式,兩點(diǎn)間的距離公式,直線的一般式方程與直線的垂直關(guān)系,以及直線的點(diǎn)斜式方程,是一道綜合性較強(qiáng)的試題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-6x-4y+8=0.以圓C與坐標(biāo)軸的交點(diǎn)分別作為雙曲線的一個(gè)焦點(diǎn)和頂點(diǎn),則適合上述條件雙曲線的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)一個(gè)圓與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0所截得的弦長(zhǎng)為2
7
,求此圓方程.
(2)已知圓C:x2+y2=9,直線l:x-2y=0,求與圓C相切,且與直線l垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負(fù)半軸的交點(diǎn)為A.由點(diǎn)A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點(diǎn)B.
(1)當(dāng)r=1時(shí),試用k表示點(diǎn)B的坐標(biāo);
(2)當(dāng)r=1時(shí),試證明:點(diǎn)B一定是單位圓C上的有理點(diǎn);(說明:坐標(biāo)平面上,橫、縱坐標(biāo)都為有理數(shù)的點(diǎn)為有理點(diǎn).我們知道,一個(gè)有理數(shù)可以表示為
qp
,其中p、q均為整數(shù)且p、q互質(zhì))
(3)定義:實(shí)半軸長(zhǎng)a、虛半軸長(zhǎng)b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當(dāng)0<k<1時(shí),是否能構(gòu)造“整勾股雙曲線”,它的實(shí)半軸長(zhǎng)、虛半軸長(zhǎng)和半焦距的長(zhǎng)恰可由點(diǎn)B的橫坐標(biāo)、縱坐標(biāo)和半徑r的數(shù)值構(gòu)成?若能,請(qǐng)嘗試探索其構(gòu)造方法;若不能,試簡(jiǎn)述你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•瀘州一模)已知圓C:x2+y2=r2(r>0)與拋物線y2=40x的準(zhǔn)線相切,若直線l:
x
a
y
b
=1
與圓C有公共點(diǎn),且公共點(diǎn)都為整點(diǎn)(整點(diǎn)是指橫坐標(biāo).縱坐標(biāo)都是整數(shù)的點(diǎn)),那么直線l共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2=4與直線L:x+y+a=0相切,則a=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案