11.y=$\sqrt{1-{{log}_{\frac{1}{3}}}x}$的定義域為$[\frac{1}{3},+∞)$.

分析 根據(jù)函數(shù)成立的條件即可求函數(shù)的定義域.

解答 解:要使函數(shù)有意義,則1-log${\;}_{\frac{1}{3}}$x≥0.
即log${\;}_{\frac{1}{3}}$x≤1,則x≥$\frac{1}{3}$,
故函數(shù)的定義域為$[\frac{1}{3},+∞)$,
故答案為:$[\frac{1}{3},+∞)$

點評 本題主要考查函數(shù)的定義域的求解,要求熟練掌握常見函數(shù)成立的條件.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.已知四棱錐P-ABCD中,底面ABCD為矩形,且中心為O,AB=BO=1,PA=PB=PC=PD=2,則該四棱錐的外接球的體積為$\frac{32\sqrt{3}}{27}$π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的上頂點為(0,2),且離心率為$\frac{{\sqrt{5}}}{3}$.
(1)求橢圓C的方程;
(2)從橢圓C上一點P向圓x2+y2=1引兩條切線,切點為A,B,當直線AB分別與x軸,y軸交于N,M兩點時,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.某市為了了解今年高中畢業(yè)生的體能狀況,從某校高中畢業(yè)班中抽取一個班進行鉛球測試,成績在8.0米(精確到0.1米)以上的為合格.數(shù)據(jù)分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30.第6小組的頻數(shù)是7.
(Ⅰ)求這次鉛球測試成績合格的人數(shù);
(Ⅱ)若參加測試的學生中9人成績優(yōu)秀,現(xiàn)要從成績優(yōu)秀的學生中,隨機選出2人參加“畢業(yè)運動會”,已知學生a、b的成績均為優(yōu)秀,求兩人a、b至少有1人入選的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設向量$\overrightarrow a$=(-1,1),$\overrightarrow b$=(2,t),且$\overrightarrow a$•$\overrightarrow b$=-1,則實數(shù)t=( 。
A.0B.-1C.-2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若復數(shù)z1,z2在復平面內對應的點關于y軸對稱,且z1=2-i,則復數(shù)$\frac{z_1}{{|{z_1}{|^2}+{z_2}}}$在復平面內對應的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知等差數(shù)列{an}的前n項和為Sn,且S9=90,S15=240.
(1)求{an}的通項公式an和前n項和Sn
(2)設anbn=$\frac{1}{(n+1)}$,Sn為數(shù)列{bn}的前n項和,若不等式Sn<t對于任意的n∈N*恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.lg2+lg5=1,已知loga2=m,loga3=n(其中a>0,且a≠1),則am+2n=18.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若體積為4的長方體的一個面的面積為1,且這個長方體8個頂點都在球O的球面上,則球O表面積的最小值為(  )
A.12πB.16πC.18πD.24π

查看答案和解析>>

同步練習冊答案