已知函數(shù)f(x)=x2-(1+2a)x+alnx(a為常數(shù)).
(1)當(dāng)a=-1時,求曲線y=f(x)在x=1處切線的方程;
(2)當(dāng)a>0時,討論函數(shù)y=f(x)在區(qū)間(0,1)上的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間.

解:(1)當(dāng)a=-1時,f(x)=x2+x-lnx,則
∴f(1)=2,f′(1)=2
∴曲線y=f(x)在x=1處切線的方程為y-2=2(x-1)
即y=2x;
(2)由題意得,
由f′(x)=0,得
①當(dāng)時,令f′(x)>0,x>0,可得0<x<a或;
令f′(x)<0,x>0,可得
∴函數(shù)f(x)的單調(diào)增區(qū)間是(0,a)和,單調(diào)減區(qū)間是;
②當(dāng)時,,當(dāng)且僅當(dāng)x=時,f′(x)=0,
所以函數(shù)f(x)在區(qū)間(0,1)上是單調(diào)增函數(shù);
③當(dāng)時,令f′(x)>0,x>0,可得0<x<a或a<x<1;
令f′(x)<0,x>0,可得
∴函數(shù)f(x)的單調(diào)增區(qū)間是(0,)和(a,1),單調(diào)減區(qū)間是;
④當(dāng)a≥1時,令f′(x)>0,x>0,可得0<x<;
令f′(x)<0,x>0,可得
∴函數(shù)f(x)的單調(diào)增區(qū)間是(0,),單調(diào)減區(qū)間是
分析:(1)求導(dǎo)函數(shù),確定切線的斜率,從而可求曲線y=f(x)在x=1處切線的方程;
(2)求導(dǎo)函數(shù),求出函數(shù)的零點(diǎn),再進(jìn)行分類討論,從而可確定函數(shù)y=f(x)在區(qū)間(0,1)上的單調(diào)性與單調(diào)區(qū)間.
點(diǎn)評:本題重點(diǎn)考查導(dǎo)數(shù)知識的運(yùn)用,考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的單調(diào)性,利用導(dǎo)數(shù)的正負(fù)確定函數(shù)的單調(diào)性是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案